1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
JDEoptim <- function(lower, upper, fn, constr = NULL, meq = 0, eps = 1e-5,
NP = 10*length(lower), Fl = 0.1, Fu = 1,
tau_F = 0.1, tau_CR = 0.1, tau_pF = 0.1,
jitter_factor = 0.001,
tol = 1e-15, maxiter = 2000*length(lower), fnscale = 1,
compare_to = c("median", "max"),
add_to_init_pop = NULL,
trace = FALSE, triter = 1,
details = FALSE, ...)
# Copyright 2013, 2014, 2016, 2023, 2025, Eduardo L. T. Conceicao
# Available under the GPL (>= 2)
{
handle.bounds <- function(x, u) {
# Check feasibility of bounds and enforce parameters limits
# by a deterministic variant of bounce-back resetting
# (also known as midpoint target/base)
# Price, KV, Storn, RM, and Lampinen, JA (2005)
# Differential Evolution: A Practical Approach to Global Optimization.
# Springer, p 206
bad <- x > upper
x[bad] <- 0.5*(upper[bad] + u[bad])
bad <- x < lower
x[bad] <- 0.5*(lower[bad] + u[bad])
x
}
performReproduction <- function() { # Mutate/recombine
ignore <- runif(d) > CRtrial
if (all(ignore)) # ensure that trial gets at least
ignore[sample(d, 1)] <- FALSE # one mutant parameter
# Source for trial is the base vector plus weighted differential
trial <- if (runif(1) <= pFtrial)
X.base + Ftrial*(X.r1 - X.r2)
else X.base + 0.5*(Ftrial + 1)*(X.r1 + X.r2 - 2*X.base)
# or trial parameter comes from target vector X.i itself.
trial[ignore] <- X.i[ignore]
trial
}
which.best <- if (!is.null(constr))
function(x) {
ind <- TAVpop <= mu
if (all(ind))
which.min(x)
else if (any(ind))
which(ind)[which.min(x[ind])]
else which.min(TAVpop)
}
else which.min
# Check input parameters
compare_to <- match.arg(compare_to)
stopifnot(length(upper) == length(lower),
length(lower) > 0, is.numeric(lower), is.finite(lower),
length(upper) > 0, is.numeric(upper), is.finite(upper),
lower <= upper,
is.function(fn))
if (!is.null(constr))
stopifnot(is.function(constr),
length(meq) == 1, meq == as.integer(meq), meq >= 0,
is.numeric(eps), is.finite(eps), eps > 0,
length(eps) == 1 || length(eps) == meq)
stopifnot(length(NP) == 1, NP == as.integer(NP), NP >= 0,
length(Fl) == 1, is.numeric(Fl),
length(Fu) == 1, is.numeric(Fu),
Fl <= Fu)
stopifnot(length(tau_F) == 1, is.numeric(tau_F), 0 <= tau_F, tau_F <= 1,
length(tau_CR) == 1, is.numeric(tau_CR), 0 <= tau_CR, tau_CR <= 1,
length(tau_pF) == 1, is.numeric(tau_pF), 0 <= tau_pF, tau_pF <= 1)
if (!is.null(jitter_factor))
stopifnot(length(jitter_factor) == 1,
is.numeric(jitter_factor),
is.finite(jitter_factor))
stopifnot(length(tol) == 1, is.numeric(tol), is.finite(tol),
length(maxiter) == 1, maxiter == as.integer(maxiter),
maxiter >= 0,
length(fnscale) == 1, is.numeric(fnscale),
is.finite(fnscale), fnscale > 0)
if (!is.null(add_to_init_pop))
stopifnot(NROW(add_to_init_pop) == length(lower),
is.numeric(add_to_init_pop),
is.finite(add_to_init_pop),
add_to_init_pop >= lower,
add_to_init_pop <= upper)
stopifnot(length(trace) == 1, is.logical(trace), !is.na(trace),
length(triter) == 1, triter == as.integer(triter), triter >= 1,
length(details) == 1, is.logical(details), !is.na(details))
child <- if (is.null(constr)) { # Evaluate/select
expression({
ftrial <- fn1(trial)
if (ftrial <= fpop[i]) {
pop[, i] <- trial
fpop[i] <- ftrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
}
})
} else if (meq > 0) { # equality constraints are present
# alongside the inequalities
# Zhang, Haibo, and Rangaiah, G. P. (2012).
# An efficient constraint handling method with integrated differential
# evolution for numerical and engineering optimization.
# Computers and Chemical Engineering 37, 74-88.
expression({
htrial <- constr1(trial)
TAVtrial <- sum( pmax(htrial, 0) )
if (TAVtrial > mu) {
if (TAVtrial <= TAVpop[i]) { # trial and target are both
pop[, i] <- trial # infeasible, the one with smaller
hpop[, i] <- htrial # constraint violation is chosen
F[, i] <- Ftrial # or trial vector when both are
CR[i] <- CRtrial # solutions of equal quality
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
}
} else if (TAVpop[i] > mu) { # trial is feasible and target is not
pop[, i] <- trial
fpop[i] <- fn1(trial)
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
} else { # between two feasible solutions, the
ftrial <- fn1(trial) # one with better objective function
if (ftrial <= fpop[i]) { # value is chosen
pop[, i] <- trial # or trial vector when both are
fpop[i] <- ftrial # solutions of equal quality
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
FF <- sum(TAVpop <= mu)/NP
mu <- mu*(1 - FF/NP)
}
}
})
} else { # only inequality constraints are present
expression({
htrial <- constr1(trial)
TAVtrial <- sum( pmax(htrial, 0) )
if (TAVtrial > mu) {
if (TAVtrial <= TAVpop[i]) { # trial and target both infeasible
pop[, i] <- trial
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
}
} else if (TAVpop[i] > mu) { # trial is feasible and target is not
pop[, i] <- trial
fpop[i] <- fn1(trial)
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
FF <- sum(TAVpop <= mu)/NP
mu <- mu*(1 - FF/NP)
} else { # two feasible solutions
ftrial <- fn1(trial)
if (ftrial <= fpop[i]) {
pop[, i] <- trial
fpop[i] <- ftrial
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
FF <- sum(TAVpop <= mu)/NP
mu <- mu*(1 - FF/NP)
}
}
})
}
fn1 <- function(par) fn(par, ...)
if (!is.null(constr))
constr1 <-
if (meq > 0) {
eqI <- 1:meq
function(par) {
h <- constr(par, ...)
h[eqI] <- abs(h[eqI]) - eps
h
}
} else function(par) constr(par, ...)
use.jitter <- !is.null(jitter_factor)
# Zielinski, Karin, and Laur, Rainer (2008).
# Stopping criteria for differential evolution in
# constrained single-objective optimization.
# In: U. K. Chakraborty (Ed.), Advances in Differential Evolution,
# SCI 143, Springer-Verlag, pp 111-138
conv <- expression(
( do.call(compare_to, list(fpop)) - fpop[x.best.ind] )/fnscale
)
# Initialization
d <- length(lower)
pop <- matrix(runif(NP*d, lower, upper), nrow = d)
if (!is.null(add_to_init_pop)) {
pop <- unname(cbind(pop, add_to_init_pop))
NP <- ncol(pop)
}
stopifnot(NP >= 4)
# Combine jitter with dither
# Storn, Rainer (2008).
# Differential evolution research - trends and open questions.
# In: U. K. Chakraborty (Ed.), Advances in Differential Evolution,
# SCI 143, Springer-Verlag, pp 11-12
F <- if (use.jitter)
(1 + jitter_factor*runif(d, -0.5, 0.5)) %o% runif(NP, Fl, Fu)
else matrix(runif(NP, Fl, Fu), nrow = 1)
CR <- runif(NP)
pF <- runif(NP)
fpop <- apply(pop, 2, fn1)
stopifnot(is.vector(fpop), !anyNA(fpop), !is.nan(fpop), !is.logical(fpop))
if (!is.null(constr)) {
hpop <- apply(pop, 2, constr1)
stopifnot(is.matrix(hpop) || is.vector(hpop),
!anyNA(hpop), !is.nan(hpop), !is.logical(hpop))
if (is.vector(hpop)) dim(hpop) <- c(1, length(hpop))
TAVpop <- apply( hpop, 2, function(x) sum(pmax(x, 0)) )
mu <- median(TAVpop)
}
popIndex <- 1:NP
x.best.ind <- which.best(fpop)
converge <- eval(conv)
rule <- if (!is.null(constr))
expression(converge >= tol || any(hpop[, x.best.ind] > 0))
else expression(converge >= tol)
convergence <- 0
iteration <- 0
while (eval(rule)) { # Generation loop
if (iteration >= maxiter) {
warning("maximum number of iterations reached without convergence")
convergence <- 1
break
}
iteration <- iteration + 1
for (i in popIndex) { # Start loop through population
# Equalize the mean lifetime of all vectors
# Price, KV, Storn, RM, and Lampinen, JA (2005)
# Differential Evolution: A Practical Approach to
# Global Optimization. Springer, p 284
i <- ((iteration + i) %% NP) + 1
# Self-adjusting parameter control scheme
Ftrial <- if (runif(1) <= tau_F) {
# Combine jitter with dither
if (use.jitter)
runif(1, Fl, Fu) * (1 + jitter_factor*runif(d, -0.5, 0.5))
else runif(1, Fl, Fu)
} else F[, i]
CRtrial <- if (runif(1) <= tau_CR) runif(1) else CR[i]
pFtrial <- if (runif(1) <= tau_pF) runif(1) else pF[i]
# DE/rand/1/either-or/bin
X.i <- pop[, i]
# Randomly pick 3 vectors all diferent from target vector
r <- sample(popIndex[-i], 3)
X.base <- pop[, r[1L]]
X.r1 <- pop[, r[2L]]
X.r2 <- pop[, r[3L]]
trial <- handle.bounds(performReproduction(), X.base)
eval(child)
x.best.ind <- which.best(fpop)
}
converge <- eval(conv)
if (trace && (iteration %% triter == 0))
cat(iteration, ":", "<", converge, ">", "(", fpop[x.best.ind], ")",
pop[, x.best.ind],
if (!is.null(constr))
paste("{", which(hpop[, x.best.ind] > 0), "}"),
fill = TRUE)
}
res <- list(par = pop[, x.best.ind],
value = fpop[x.best.ind],
iter = iteration,
convergence = convergence)
if (details) {
res$poppar <- pop
res$popcost <- fpop
}
res
}
## Not exported, and only used because CRAN checks must be faster
doExtras <- function() {
interactive() || nzchar(Sys.getenv("R_DEoptimR_check_extra")) ||
identical("true", unname(Sys.getenv("R_PKG_CHECKING_doExtras")))
}
|