1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
## ========================================================================
## General functions of deSolve
## ========================================================================
timestep <- function (prev = TRUE) {
out <- .Call("getTimestep", PACKAGE = "deSolve")
if (prev)
return(out[1])
else
return(out[2])
}
## ========================================================================
## Check solver input - livermore solvers and rk
## ========================================================================
checkInput <- function(y, times, func, rtol, atol,
jacfunc, tcrit, hmin, hmax, hini, dllname, jacname = "jacfunc")
{
if (!is.numeric(y)) stop("`y' must be numeric")
n <- length(y)
if (! is.null(times) && !is.numeric(times))
stop("`times' must be NULL or numeric")
if (!is.function(func) && !is.character(func))
stop("`func' must be a function or character vector")
if (is.character(func) && (is.null(dllname) || !is.character(dllname)))
stop("specify the name of the dll or shared library where func can be found (without extension)")
if (!is.numeric(rtol)) stop("`rtol' must be numeric")
if (!is.numeric(atol)) stop("`atol' must be numeric")
if (!is.null(tcrit) & !is.numeric(tcrit)) stop("`tcrit' must be numeric")
if (!is.null(jacfunc) && !(is.function(jacfunc) || is.character(jacfunc)))
stop(paste(jacname," must be a function or character vector"))
if (length(atol) > 1 && length(atol) != n)
stop("`atol' must either be a scalar, or as long as `y'")
if (length(rtol) > 1 && length(rtol) != n)
stop("`rtol' must either be a scalar, or as long as `y'")
if (!is.numeric(hmin)) stop("`hmin' must be numeric")
if (hmin < 0) stop("`hmin' must be a non-negative value")
if (is.null(hmax))
hmax <- if (is.null(times)) 0 else max(abs(diff(times)))
if (!is.numeric(hmax)) stop("`hmax' must be numeric")
if (hmax < 0) stop("`hmax' must be a non-negative value")
if (hmax == Inf) hmax <- 0
if (!is.null(hini))
if(hini < 0) stop("`hini' must be a non-negative value")
return(hmax)
}
## ========================================================================
## Check solver input - euler and rk4
## ========================================================================
checkInputEuler <- function (y, times, func, dllname) {
if (!is.numeric(y)) stop("`y' must be numeric")
n <- length(y)
if (! is.null(times) && !is.numeric(times))
stop("`times' must be NULL or numeric")
if (!is.function(func) && !is.character(func))
stop("`func' must be a function or character vector")
if (is.character(func) && (is.null(dllname) || !is.character(dllname)))
stop("You need to specify the name of the dll or shared library where func can be found (without extension)")
}
## ========================================================================
## Check ode function call - livermore solvers
## ========================================================================
checkFunc<- function (Func2, times, y, rho) {
## Call func once to figure out whether and how many "global"
## results it wants to return and some other safety checks
tmp <- eval(Func2(times[1], y), rho)
if (!is.list(tmp))
stop("Model function must return a list\n")
if (length(tmp[[1]]) != length(y))
stop(paste("The number of derivatives returned by func() (",
length(tmp[[1]]),
") must equal the length of the initial conditions vector (",
length(y), ")", sep = ""))
## use "unlist" here because some output variables are vectors/arrays
Nglobal <- if (length(tmp) > 1)
length(unlist(tmp[-1])) else 0
## Karline: changed this:
## Nmtot is now a list with names, dimensions,... for 1-D, 2-D vars
Nmtot <- list()
Nmtot$colnames <- attr(unlist(tmp[-1]), "names")
Nmtot$lengthvar <- unlist(lapply(tmp, length))
if (length(Nmtot$lengthvar) < Nglobal+1){
Nmtot$dimvar <- lapply(tmp[-1], dim)
}
return(list(Nglobal = Nglobal, Nmtot = Nmtot))
}
## ========================================================================
## Check event function calls
## ========================================================================
checkEventFunc<- function (Func, times, y, rho) {
## Call func once
tmp <- eval(Func(times[1], y), rho)
if (length(tmp) != length(y))
stop(paste("The number of values returned by events$func() (",
length(tmp),
") must equal the length of the initial conditions vector (",
length(y), ")", sep = ""))
if (!is.vector(tmp))
stop("The event function 'events$func' must return a vector\n")
}
## ========================================================================
## Check ode function call - euler and rk solvers
## ========================================================================
checkFuncEuler<- function (Func, times, y, parms, rho, Nstates) {
## Call func once to figure out whether and how many "global"
## results it wants to return and some other safety checks
tmp <- eval(Func(times[1], y, parms), rho)
if (!is.list(tmp)) stop("Model function must return a list\n")
if (length(tmp[[1]]) != Nstates)
stop(paste("The number of derivatives returned by func() (",
length(tmp[[1]]),
"must equal the length of the initial conditions vector (",
Nstates, ")", sep=""))
## use "unlist" because output variables can be vectors/arrays
Nglobal <- if (length(tmp) > 1)
length(unlist(tmp[-1])) else 0
Nmtot <- list()
Nmtot$colnames <- attr(unlist(tmp[-1]), "names")
Nmtot$lengthvar <- unlist(lapply(tmp, length))
if (length(Nmtot$lengthvar) < Nglobal+1){
Nmtot$dimvar <- lapply(tmp[-1], dim)
}
return(list(Nglobal = Nglobal, Nmtot = Nmtot))
}
## ========================================================================
## check ode DLL input
## ========================================================================
checkDLL <- function (func, jacfunc, dllname,
initfunc, verbose, nout, outnames, JT = 1) {
if (sum(duplicated (c(func, initfunc, jacfunc))) > 0)
stop("func, initfunc, or jacfunc cannot be the same")
ModelInit <- NA
if (! is.null(initfunc)) # to allow absence of initfunc
if (inherits (initfunc, "CFunc"))
ModelInit <- body(initfunc)[[2]]
else if (is.loaded(initfunc, PACKAGE = dllname, type = "") ||
is.loaded(initfunc, PACKAGE = dllname, type = "Fortran")) {
ModelInit <- getNativeSymbolInfo(initfunc, PACKAGE = dllname)$address
} else if (initfunc != dllname && ! is.null(initfunc))
stop(paste("'initfunc' not loaded ", initfunc))
## Easier to deal with NA in C-code
if (is.null(initfunc)) ModelInit <- NA
## copy value of func to funcname
## check to make sure it describes a function in a loaded dll
funcname <- func
## get the pointer and put it in func
if (inherits (func, "CFunc"))
Func <- body(func)[[2]]
else if(is.loaded(funcname, PACKAGE = dllname)) {
Func <- getNativeSymbolInfo(funcname, PACKAGE = dllname)$address
} else stop(paste("dyn function 'func' not loaded", funcname))
## Finally, is there a Jacobian?
if (!is.null(jacfunc)) {
if (!is.character(jacfunc))
switch (JT,
stop("If 'func' is dynloaded, so must 'jacfunc' be"),
stop("If 'func' is dynloaded, so must 'jacvec' be")
)
jacfuncname <- jacfunc
if (inherits (jacfunc, "CFunc"))
JacFunc <- body(jacfunc)[[2]]
else if(is.loaded(jacfuncname, PACKAGE = dllname)) {
JacFunc <- getNativeSymbolInfo(jacfuncname, PACKAGE = dllname)$address
} else stop(paste("cannot integrate: jac function not loaded ", jacfunc))
} else JacFunc <- NULL
Nglobal <- nout
Nmtot <- list()
if (is.null(outnames))
{ Nmtot$colnames <- NULL} else
if (length(outnames) == nout)
{ Nmtot$colnames <- outnames} else
if (length(outnames) > nout)
Nmtot$colnames <- outnames[1:nout] else
Nmtot$colnames <- c(outnames,(length(outnames)+1):nout)
cnames <- outnames
unames <- unique(outnames)
if (length(cnames) > length(unames))
Nmtot$lengthvar <- c(NA,
sapply (unames, FUN = function(x) length(which(cnames == x))))
## thpe: set extra class to be checked by solvers
ret <- list(ModelInit = ModelInit, Func = Func, JacFunc = JacFunc,
Nglobal = Nglobal, Nmtot = Nmtot)
class(ret) <- c("deSolve.symbols", "list")
return(ret)
}
## =============================================================================
## print integration task
## =============================================================================
printtask <- function(itask, func, jacfunc) {
printM("\n--------------------")
printM("Time settings")
printM("--------------------\n")
if (itask==1) printM(" Normal computation of output values of y(t) at t = TOUT") else
if (itask==2) printM(" Take one step only and return.") else
if (itask==3) printM(" istop at the first internal mesh point at or beyond t = TOUT and return. ") else
if (itask==4) printM(" Normal computation of output values of y(t) at t = TOUT but without overshooting t = TCRIT.") else
if (itask==5) printM(" Take one step, without passing TCRIT, and return.")
printM("\n--------------------")
printM("Integration settings")
printM("--------------------\n")
if (is.character(func)) printM(paste(" Model function a DLL: ", func)) else
printM(" Model function an R-function: ")
if (is.character(jacfunc)) printM(paste (" Jacobian specified as a DLL: ", jacfunc)) else
if (!is.null(jacfunc)) printM(" Jacobian specified as an R-function: ") else
printM(" Jacobian not specified")
cat("\n")
}
## =============================================================================
## Make Istate vector similar for all solvers.
## =============================================================================
setIstate <- function(istate, iin, iout)
{
IstateOut <- rep(NA, 21)
IstateOut[iout] <- istate[iin]
IstateOut
}
## =============================================================================
## Output cleanup - for the Livermore solvers
## =============================================================================
saveOut <- function (out, y, n, Nglobal, Nmtot, func, Func2,
iin, iout, nr = 4) {
troot <- attr(out, "troot")
istate <- attr(out, "istate")
istate <- setIstate(istate,iin,iout)
valroot <- attr(out, "valroot")
indroot <- attr(out, "indroot")
Rstate <- attr(out, "rstate")
rstate <- rep(NA,5)
rstate[1:nr] <- Rstate[1:nr]
nm <- c("time",
if (!is.null(attr(y, "names"))) names(y) else as.character(1:n))
if (Nglobal > 0) {
nm <- c(nm,
if (!is.null(Nmtot$colnames))
Nmtot$colnames else as.character((n+1) : (n + Nglobal)))
}
attr(out,"istate") <- istate
attr(out, "rstate") <- rstate
if (! is.null(Nmtot$lengthvar))
if (is.na(Nmtot$lengthvar[1]))Nmtot$lengthvar[1] <- length(y)
attr(out, "lengthvar") <- Nmtot$lengthvar
if (! is.null(troot)) attr(out, "troot") <- troot
if (! is.null(valroot)) attr(out, "valroot") <- matrix(nrow = n, valroot)
if (! is.null(indroot)) attr(out, "indroot") <- indroot
ii <- if (is.null(Nmtot$dimvar))
NULL else !(unlist(lapply(Nmtot$dimvar, is.null))) # variables with dimension
if (sum(ii) >0)
attr(out, "dimvar") <- Nmtot$dimvar[ii] # dimensions that are not null
class(out) <- c("deSolve", "matrix") # a differential equation
dimnames(out) <- list(nm, NULL)
return (t(out))
}
## =============================================================================
## Output cleanup - for the Runge-Kutta solvers
## =============================================================================
saveOutrk <- function(out, y, n, Nglobal, Nmtot, iin, iout, transpose = FALSE) {
## Names for the outputs
nm <- c("time",
if (!is.null(attr(y, "names"))) names(y) else as.character(1:n)
)
## Global outputs
if (Nglobal > 0) {
nm <- c(nm,
if (!is.null(Nmtot$colnames))
Nmtot$colnames else as.character((n + 1) : (n + Nglobal))
)
}
## Column names and state information
dimnames(out) <- list(NULL, nm)
istate <- attr(out, "istate")
istate <- setIstate(istate, iin, iout)
attr(out,"istate") <- istate
if (! is.null(Nmtot$lengthvar))
if (is.na(Nmtot$lengthvar[1])) Nmtot$lengthvar[1] <- length(y)
attr(out, "lengthvar") <- Nmtot$lengthvar
ii <- if (is.null(Nmtot$dimvar))
NULL else !(unlist(lapply(Nmtot$dimvar, is.null))) # variables with dimension
if (sum(ii) >0)
attr(out, "dimvar") <- Nmtot$dimvar[ii] # only those which are not null
class(out) <- c("deSolve", "matrix") # output of a differential equation
if (transpose)
return(t(out))
else
return(out)
}
|