1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
|
## =============================================================================
## matplot methods - it is not an S3 generic...
## =============================================================================
## the following code was used to make 'matplot' a generic, but
## we disabled this because of unwanted side-effects to other packages,
## see also outcommented code at the end of this file
#matplot <- function (x, ...) UseMethod("matplot")
#matplot.default <- function (x, ...) {
#if (inherits (x, "deSolve"))
# matplot.deSolve(x,...)
#else
# graphics::matplot(x,...)
# #NextMethod()
#}
matplot.deSolve <- function(x, ..., select = NULL, which = select,
obs = NULL, obspar = list(), subset = NULL,
legend = list(x = "topright")) { # legend can be a list
t <- 1 # column with independent variable "times"
# Set the observed data
obs <- SetData(obs)
# variables to be plotted and their position in "x"
varnames <- colnames(x)
xWhich <- NULL
lW <- length(which)
WhichVar <- function(xWhich, obs, varnames) {
if (is.null(xWhich) & is.null(obs$dat)) # All variables plotted
Which <- 2 : length(varnames)
else if (is.null(xWhich)) { # All common variables in x and obs plotted
Which <- which(varnames %in% obs$name)
Which <- Which [Which > 1]
} else if (is.character(xWhich)) {
Which <- which(varnames %in% xWhich)
if (length(Which) != length(xWhich))
stop ("unknown variable", paste(xWhich, collapse = ","))
}
else
Which <- xWhich + 1
return(Which)
}
if (lW & is.list(which))
xWhich <- lapply(which, FUN = function (x) WhichVar(x, obs, varnames))
else if (lW)
xWhich <- list(WhichVar(which, obs, varnames))
else
xWhich <- list(2:length(varnames))
vn <- lapply(xWhich, FUN = function(x) paste(varnames[x], collapse = ","))
vn2 <- unlist(lapply(xWhich, FUN = function(x) paste(varnames[x])))
np <- length(xWhich) # number of y-axes
nx <- length(unlist(xWhich)) # number of y-variables
# add Position of variables to be plotted in "obs"
obs <- updateObs2 (obs, varnames, unlist(xWhich))
# The ellipsis
ldots <- list(...)
Dots <- splitdots(ldots, varnames)
if (Dots$nother > 1)
stop ("can plot only one deSolve output object at a time with matplot")
Dotmain <- setdots(Dots$main, np)
# these are different from the default
Dotmain$xlab <- expanddots(ldots$xlab, varnames[t] , np)
Dotmain$ylab <- expanddots(ldots$ylab, vn , np)
Dotmain$main <- expanddots(ldots$main, as.character(substitute(x)), np)
# ylim and xlim can be lists and are at least two values
yylim <- expanddotslist(ldots$ylim, np)
xxlim <- expanddotslist(ldots$xlim, np)
Dotpoints <- setdots(Dots$points, nx) # expand all dots to nx values
# these are different from default
Dotpoints$type <- expanddots(ldots$type, "l", nx)
Dotpoints$lty <- expanddots(ldots$lty, 1:nx, nx)
Dotpoints$pch <- expanddots(ldots$pch, 1:nx, nx)
Dotpoints$col <- expanddots(ldots$col, 1:nx, nx)
Dotpoints$bg <- expanddots(ldots$bg, 1:nx, nx)
if (! is.null(obs)) {
ii <- which(unlist(xWhich) %in% unlist(obs$Which))
ii <- ii[! is.na(ii)]
if (is.null(obs$par))
obs$par <- list()
else
obs$par <- lapply(obspar, repdots, obs$length)
if (is.null(obs$par$pch))
obs$par$pch <- Dotpoints$pch[ii]
if (is.null(obs$par$cex))
obs$par$cex <- Dotpoints$cex[ii]
if (is.null(obs$par$col))
obs$par$col <- Dotpoints$col[ii]
if (is.null(obs$par$bg))
obs$par$bg <- Dotpoints$bg[ii]
}
if (!missing(subset)){
e <- substitute(subset)
r <- eval(e, as.data.frame(x), parent.frame())
if (is.numeric(r)) {
isub <- r
} else {
if (!is.logical(r))
stop("'subset' must evaluate to logical or be a vector with integers")
isub <- r & !is.na(r)
}
} else {
isub <- TRUE
}
# LOOP for each (set of) output variables (and y-axes)
if (np > 1)
par(mar = c(5.1, 4.1, 4.1, 2.1) + c(0, (np-1)*4, 0, 0))
ii <- 1
for (ip in 1 : np) {
ix <- xWhich[[ip]] # position of y-variables in 'x'
iL <- length(ix)
iip <- ii:(ii+iL-1) # for dotpoints
ii <- ii + iL
io <- obs$Which[iip]
# plotting parameters for matplot and axes
dotmain <- extractdots(Dotmain, ip)
if (is.null(dotmain$axes)) dotmain$axes <- FALSE
if (is.null(dotmain$frame.plot)) dotmain$frame.plot <- TRUE
dotpoints <- extractdots(Dotpoints, iip) # for all variables
Xlog <- Ylog <- FALSE
if (! is.null(dotmain$log)) {
Ylog <- length(grep("y",dotmain$log))
Xlog <- length(grep("x",dotmain$log))
}
SetRangeMat <- function(lim, x, isub, ix, obs, io, Log) {
if ( is.null (lim)) {
yrange <- Range(NULL, as.vector(x[isub, ix]), Log)
if (! is.na(io[1])) yrange <- Range(yrange, as.vector(obs$dat[,io]), Log)
} else
yrange <- lim
return(yrange)
}
dotmain$ylim <- SetRangeMat(yylim[[ip]], x, isub, ix, obs, io, Ylog)
dotmain$xlim <- SetRangeMat(xxlim[[ip]], x, isub, t, obs, io, Xlog)
Ylab <- dotmain$ylab
dotmain$ylab <- ""
if (ip > 1) {
par(new = TRUE)
dotmain$xlab <- dotmain$main <- ""
}
do.call("matplot", c(alist(x[isub, t], x[isub, ix]), dotmain, dotpoints))
if (ip == 1)
axis(1, cex = dotmain$cex.axis)
cex <- ifelse (is.null(dotmain$cex.lab), 0.9, 0.9*dotmain$cex.lab)
bL <- 4*(ip-1)
axis(side = 2, line = bL, cex = dotmain$cex.axis)
mtext(side = 2, line = bL+2, Ylab, cex = cex)
if (! is.na(io[1]))
for (j in 1: length(io)) {
i <- which (obs$Which == io[j])
if (length (i.obs <- obs$pos[i, 1]:obs$pos[i, 2]) > 0)
do.call("points", c(alist(obs$dat[i.obs, 1], obs$dat[i.obs, io[j]]),
extractdots(obs$par, j) ))
}
}
if (is.null(legend))
legend <- list(x = "topright")
if (is.list(legend)){ # can also be FALSE
if (length(legend$legend))
L <- legend$legend
else
L <- vn2
legend$legend <- NULL
if (is.null(legend$x))
legend$x <- "topright"
lty <- Dotpoints$lty
pch <- Dotpoints$pch
lty[Dotpoints$type == "p"] <- NA
pch[Dotpoints$type == "l"] <- NA
do.call ("legend", c(legend, alist(lty = lty, lwd = Dotpoints$lwd,
pch =pch, col = Dotpoints$col, pt.bg =Dotpoints$bg,
legend = L)))
}
}
### ============================================================================
### plotting 1-D variables as line plot, one for each time
### ============================================================================
matplot.1D <- function (x, select= NULL, which = select, ask = NULL,
obs = NULL, obspar = list(), grid = NULL,
xyswap = FALSE, vertical = FALSE, subset = NULL, ...) {
## Check settings of x
att <- attributes(x)
nspec <- att$nspec
dimens <- att$dimens
proddim <- prod(dimens)
if (length(dimens) != 1)
stop ("matplot.1D only works for models solved with 'ode.1D'")
if ((ncol(x)- nspec*proddim) < 1)
stop("ncol of 'x' should be > 'nspec' * dimens if x is a vector")
# Set the observed data
obs <- SetData(obs)
# 1-D variable names
varnames <- if (! is.null(att$ynames))
att$ynames else 1:nspec
if (! is.null(att$lengthvar))
varnames <- c(varnames, names(att$lengthvar)[-1])
# variables to be plotted, common between obs and x
Which <- WhichVarObs(which, obs, nspec, varnames, remove1st = FALSE)
np <- length(Which)
# Position of variables to be plotted in "x"
Select <- select1dvar(Which, varnames, att) # also start and end position
xWhich <- Select$Which
# add Position of variables to be plotted in "obs"
obs <- updateObs (obs, varnames, xWhich)
obs$par <- lapply(obspar, repdots, obs$length)
# the ellipsis
ldots <- list(...)
# number of figures in a row and interactively wait if remaining figures
ask <- setplotpar(ldots, np, ask)
if (ask) {
oask <- devAskNewPage(TRUE)
on.exit(devAskNewPage(oask))
}
Dots <- splitdots(ldots, varnames)
nother <- Dots$nother
Dotpoints <- Dots$points
Dotmain <- setdots(Dots$main, np) # expand all dots to np values (no defaults)
# These are different from defaults
Dotmain$xlab <- expanddots(ldots$xlab, "x", np)
Dotmain$ylab <- expanddots(ldots$ylab, "", np)
Dotmain$main <- expanddots(ldots$main, varnames[xWhich], np)
# xlim and ylim are special:
xxlim <- expanddotslist(ldots$xlim, np)
yylim <- expanddotslist(ldots$ylim, np)
xyswap <- rep(xyswap, length = np)
vertical <- rep(vertical, length = np)
if (!missing(subset)){
e <- substitute(subset)
r <- eval(e, as.data.frame(x), parent.frame())
if (is.numeric(r)) {
isub <- r
} else {
if (!is.logical(r))
stop("'subset' must evaluate to logical or be a vector with integers")
isub <- r & !is.na(r)
}
} else isub <- 1:nrow(x)
grid <- expanddotslist(grid, np)
for (ip in 1:np) {
istart <- Select$istart[ip]
istop <- Select$istop[ip]
io <- obs$Which[ip]
out <- t(x[ isub, istart:istop])
if (length (isub) > 1 & sum (isub) == 1)
out <- matrix (out)
Grid <- grid[[ip]]
if (is.null(Grid))
Grid <- 1:nrow(out)
dotmain <- extractdots(Dotmain, ip)
Xlog <- Ylog <- FALSE
if (! is.null(dotmain$log)) {
Ylog <- length(grep("y", dotmain$log))
Xlog <- length(grep("x", dotmain$log))
}
if (vertical[ip]) { # overrules other settings; vertical profiles
xyswap[ip] <- TRUE
dotmain$axes <- FALSE
dotmain$xlab <- ""
dotmain$xaxs <- "i"
dotmain$yaxs <- "i"
}
if (! xyswap[ip]) {
if (! is.null(xxlim[[ip]]))
dotmain$xlim <- xxlim[[ip]]
dotmain$ylim <- SetRange(yylim[[ip]], x, NULL, isub, istart:istop, obs, io, Ylog)
} else {
if (! is.null(yylim[[ip]]))
dotmain$ylim <- yylim[[ip]]
dotmain$xlim <- SetRange(xxlim[[ip]], x, NULL, isub, istart:istop, obs, io, Xlog)
if (is.null(yylim[[ip]]) & xyswap[ip])
dotmain$ylim <- rev(range(Grid)) # y-axis
}
if (! xyswap[ip]) {
do.call("matplot", c(alist(Grid, out), dotmain, Dotpoints))
if (! is.na(io))
plotObs(obs, io)
} else {
if (is.null(dotmain$xlab[ip]) | is.null(dotmain$ylab[ip])) {
dotmain$ylab <- dotmain$xlab[ip]
dotmain$xlab <- dotmain$ylab[ip]
}
do.call("matplot", c(alist(out, Grid), dotmain, Dotpoints))
if (vertical[ip])
DrawVerticalAxis(dotmain, min(out))
if (! is.na(io))
plotObs(obs, io, xyswap = TRUE)
}
}
}
## =============================================================================
## S3/S4 compatibility
## =============================================================================
## make matplot an S4 method and then extend generic for class deSolve
## but note that matplot.1D is not (yet) a generic, because .1D is just an
## alternative way of plotting and not a well defined class
setGeneric("matplot", function(x, ...) graphics::matplot(x, ...))
setOldClass("deSolve")
setMethod("matplot", list(x = "deSolve"), matplot.deSolve)
## thpe: 2016-06-20, deSolve 1.14
## exporting matplot leads to annoying messages during package startup
## experimental approach:
## - do not anymore export matplot
## - instead, use exported 'matplot.deSolve' or alias 'matplot.0D'
matplot.0D <- matplot.deSolve
|