1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
### ============================================================================
### zvode -- solves ordinary differential equation systems
###
### This is vode for complex numbers
### ============================================================================
zvode <- function(y, times, func, parms, rtol=1e-6, atol=1e-6,
jacfunc=NULL, jactype = "fullint", mf = NULL, verbose=FALSE,
tcrit = NULL, hmin=0, hmax=NULL, hini=0, ynames=TRUE, maxord=NULL,
bandup=NULL, banddown=NULL, maxsteps=5000, dllname=NULL,
initfunc=dllname, initpar=parms, rpar=NULL, ipar=NULL,
nout=0, outnames=NULL, forcings=NULL, initforc = NULL,
fcontrol=NULL, ...) {
### check input
n <- length(y)
if (! is.null(times) && !is.numeric(times))
stop("`times' must be NULL or numeric")
if (!is.function(func) && !is.character(func))
stop("`func' must be a function or character vector")
if (is.character(func) && (is.null(dllname) || !is.character(dllname)))
stop("specify the name of the dll or shared library where func can be found (without extension)")
if (!is.numeric(rtol)) stop("`rtol' must be numeric")
if (!is.numeric(atol)) stop("`atol' must be numeric")
if (!is.null(tcrit) & !is.numeric(tcrit)) stop("`tcrit' must be numeric")
if (!is.null(jacfunc) && !(is.function(jacfunc) || is.character(jacfunc)))
stop(paste(jacfunc," must be a function or character vector"))
if (length(atol) > 1 && length(atol) != n)
stop("`atol' must either be a scalar, or as long as `y'")
if (length(rtol) > 1 && length(rtol) != n)
stop("`rtol' must either be a scalar, or as long as `y'")
if (!is.numeric(hmin)) stop("`hmin' must be numeric")
if (hmin < 0) stop("`hmin' must be a non-negative value")
if (is.null(hmax))
hmax <- if (is.null(times)) 0 else max(abs(diff(times)))
if (!is.numeric(hmax)) stop("`hmax' must be numeric")
if (hmax < 0) stop("`hmax' must be a non-negative value")
if (hmax == Inf) hmax <- 0
if (!is.null(hini))
if(hini < 0) stop("`hini' must be a non-negative value")
if (!is.null(maxord))
if (maxord < 1)
stop("`maxord' must be >1")
### Jacobian, method flag
if (is.null(mf)) {
if (jactype == "fullint" )
imp <- 22 # full, calculated internally
else if (jactype == "fullusr" )
imp <- 21 # full, specified by user function
else if (jactype == "bandusr" )
imp <- 24 # banded, specified by user function
else if (jactype == "bandint" )
imp <- 25 # banded, calculated internally
else
stop("'jactype' must be one of 'fullint', 'fullusr', 'bandusr' or 'bandint' if 'mf' not specified")
} else imp <- mf
if (! imp %in% c(10:17, 20:27, -11,-12,-14,-15,-21, -22, -24: -27))
stop ("method flag 'mf' not allowed")
# check other specifications depending on Jacobian
miter <- abs(imp)%%10
if (miter %in% c(1,4) & is.null(jacfunc))
stop ("'jacfunc' NOT specified; either specify 'jacfunc' or change 'jactype' or 'mf'")
meth <- abs(imp)%/%10 # basic linear multistep method
jsv <- sign(imp)
if (is.null (maxord))
maxord <- ifelse(meth==1,12,5)
if (meth==1 && maxord > 12)
stop ("'maxord' too large: should be <= 12")
if (meth==2 && maxord > 5 )
stop ("'maxord' too large: should be <= 5")
if (miter %in% c(4,5) && is.null(bandup))
stop("'bandup' must be specified if banded Jacobian")
if (miter %in% c(4,5) && is.null(banddown))
stop("'banddown' must be specified if banded Jacobian")
if (is.null(banddown)) banddown <-1
if (is.null(bandup )) bandup <-1
### model and Jacobian function
Func <- NULL
JacFunc <- NULL
## if (miter == 4) Jacobian should have banddown empty rows-vode only!
if (miter == 4 && banddown>0)
erow<-matrix(data=0, ncol=n, nrow=banddown) else erow<-NULL
Ynames <- attr(y,"names")
flist<-list(fmat=0,tmat=0,imat=0,ModelForc=NULL)
ModelInit <- NULL
if (is.character(func) | inherits(func, "CFunc")) { # function specified in a DLL or inline compiled
DLL <- checkDLL(func,jacfunc,dllname,
initfunc,verbose,nout, outnames)
ModelInit <- DLL$ModelInit
Func <- DLL$Func
JacFunc <- DLL$JacFunc
Nglobal <- DLL$Nglobal
Nmtot <- DLL$Nmtot
if (! is.null(forcings))
flist <- checkforcings(forcings,times,dllname,initforc,verbose,fcontrol)
rho <- NULL
if (is.null(ipar)) ipar<-0
if (is.null(rpar)) rpar<-0
if (!is.null(jacfunc)) {
# if (miter == 4) Jacobian should have empty banddown empty rows
# This is so for vode only; other solvers do not need this
# As this is not compatible with other solvers, this option has been
# toggled off (otherwise DLL function might crash)
if (miter == 4&& banddown>0)
stop("The combination of user-supplied banded Jacobian in a dll is NOT allowed")
}
} else {
if(is.null(initfunc))
initpar <- NULL # parameter initialisation not needed if function is not a DLL
rho <- environment(func)
# func and jac are overruled, either including ynames, or not
# This allows to pass the "..." arguments and the parameters
if(ynames) {
Func <- function(time,state) {
attr(state,"names") <- Ynames
func (time,state,parms,...)[1]
}
Func2 <- function(time,state){
attr(state,"names") <- Ynames
func (time,state,parms,...)
}
JacFunc <- function(time,state){
attr(state,"names") <- Ynames
rbind(jacfunc(time,state,parms,...),erow)
}
} else { # no ynames...
Func <- function(time,state)
func (time,state,parms,...)[1]
Func2 <- function(time,state)
func (time,state,parms,...)
JacFunc <- function(time,state)
rbind(jacfunc(time,state,parms,...),erow)
}
## Check function and return the number of output variables +name
FF <- checkFuncComplex(Func2,times,y,rho)
Nglobal<-FF$Nglobal
Nmtot <- FF$Nmtot
if (miter %in% c(1,4)) {
tmp <- eval(JacFunc(times[1], y), rho)
if (!is.matrix(tmp))
stop("Jacobian function must return a matrix\n")
dd <- dim(tmp)
if((miter ==4 && any(dd != c(bandup+banddown+banddown+1,n))) ||
(miter ==1 && any(dd != c(n,n))))
stop("Jacobian dimension not ok")
}
}
### work arrays iwork, rwork
# length of rwork, zwork and iwork
lzw <- n*(maxord+1)+2*n
if(miter %in% c(1,2) && imp>0)
lzw <- lzw + 2*n*n+2
if(miter %in% c(1,2) && imp<0)
lzw <- lzw + n*n
if(miter ==3)
lzw <- lzw + n
if(miter %in% c(4,5) && imp>0)
lzw <- lzw + (3*banddown+2*bandup+2)*n
if(miter %in% c(4,5) && imp<0)
lzw <- lzw + (2*banddown+bandup+1)*n
lrw <- 20 +n
liw <- ifelse(miter %in% c(0,3),30,30+n)
# only first 20 or 30 elements passed; other will be allocated in C-code
iwork <- vector("integer",30)
rwork <- vector("double",20)
rwork[] <- 0.
iwork[] <- 0
iwork[1] <- banddown
iwork[2] <- bandup
iwork[5] <- maxord
iwork[6] <- maxsteps
if(! is.null(tcrit)) rwork[1] <- tcrit
rwork[5] <- hini
rwork[6] <- hmax
rwork[7] <- hmin
### the task to be performed.
if (! is.null(times))
itask <- ifelse (is.null (tcrit), 1,4) else # times specified
itask <- ifelse (is.null (tcrit), 2,5) # only one step
if(is.null(times)) times<-c(0,1e8)
### print to screen...
if (verbose) {
printtask(itask,func,jacfunc)
printM("\n--------------------")
printM("Integration method")
printM("--------------------")
df <- c("method flag, =",
"jsv =",
"meth =",
"miter =")
vals <- c(imp, jsv, meth, miter)
txt <- "; (note: mf = jsv * (10 * meth + miter))"
if (jsv==1) txt<-c(txt,
"; a copy of the Jacobian is saved for reuse in the corrector iteration algorithm" ) else
if (jsv==-1)txt<-c(txt,
"; a copy of the Jacobian is not saved")
if (meth==1)txt<-c(txt,
"; the basic linear multistep method: the implicit Adams method") else
if (meth==2)txt<-c(txt,"; the basic linear multistep method:
based on backward differentiation formulas")
if (miter==0)txt<-c(txt,
"; functional iteration (no Jacobian matrix is involved") else
if (miter==1)txt<-c(txt,
"; chord iteration with a user-supplied full (NEQ by NEQ) Jacobian") else
if (miter==2)txt<-c(txt,
"; chord iteration with an internally generated full Jacobian,
(NEQ extra calls to F per df/dy value)") else
if (miter==3)txt<-c(txt,
"; chord iteration with an internally generated diagonal Jacobian
(1 extra call to F per df/dy evaluation)") else
if (miter==4)txt<-c(txt,
"; chord iteration with a user-supplied banded Jacobian") else
if (miter==5)txt<-c(txt,
"; chord iteration with an internally generated banded Jacobian
(using ML+MU+1 extra calls to F per df/dy evaluation)")
printmessage(df, vals, txt)
}
### calling solver
storage.mode(y) <- "complex"
storage.mode(times) <- "double"
on.exit(.C("unlock_solver"))
out <- .Call("call_zvode", y, times, Func, initpar, rtol, atol,
rho, tcrit, JacFunc, ModelInit, as.integer(itask),
as.double(rwork),as.integer(iwork), as.integer(imp),as.integer(Nglobal),
as.integer(lzw),as.integer(lrw),as.integer(liw), as.complex (rpar),
as.integer(ipar),flist,PACKAGE = "deSolve")
### saving results
nR <- ncol(out)
out [1,] <- as.complex(times[1:nR]) # times not set here...
out <- saveOut(out, y, n, Nglobal, Nmtot, func, Func2,
iin=c(1,12:23), iout=1:13)
attr(out, "type") <- "cvode"
if (verbose) diagnostics(out)
out
}
checkFuncComplex<- function (Func2, times, y, rho) {
## Call func once to figure out whether and how many "global"
## results it wants to return and some other safety checks
if (! is.complex(y))
stop("'y' should be complex, not real")
tmp <- eval(Func2(times[1], y), rho)
if (!is.list(tmp))
stop("Model function must return a list\n")
if (length(tmp[[1]]) != length(y))
stop(paste("The number of derivatives returned by func() (",
length(tmp[[1]]),
") must equal the length of the initial conditions vector (",
length(y),")",sep=""))
if (! is.complex(tmp[[1]]))
stop("derivatives (first element returned by 'func') should be complex, not real")
# use "unlist" here because some output variables are vectors/arrays
Nglobal <- if (length(tmp) > 1)
length(unlist(tmp[-1])) else 0
Nmtot <- attr(unlist(tmp[-1]),"names")
return(list(Nglobal = Nglobal, Nmtot=Nmtot))
}
|