1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
|
\documentclass[article,nojss]{jss}
\DeclareGraphicsExtensions{.pdf,.eps}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Add-on packages and fonts
\usepackage{amsmath}
\usepackage{xspace}
\usepackage{verbatim}
\usepackage[english]{babel}
%\usepackage{mathptmx}
%\usepackage{helvet}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\newcommand{\Rmodels}{\textbf{\textsf{R models}}\xspace}
\newcommand{\DLLmodels}{\textbf{\textsf{DLL models}}\xspace}
\title{\proglang{R} Package \pkg{deSolve}, Writing Code in Compiled
Languages}
\Plaintitle{R Package deSolve, Writing Code in Compiled Languages}
\Keywords{differential equation solvers, compiled code, performance,
\proglang{FORTRAN}, \proglang{C}}
\Plainkeywords{differential equation solvers, compiled code,
performance, FORTRAN, C}
\author{
Karline Soetaert\\
Royal Netherlands Institute\\
of Sea Research (NIOZ)\\
Yerseke\\
The Netherlands
\And
Thomas Petzoldt\\
Technische Universit\"at \\
Dresden\\
Germany
\And
R. Woodrow Setzer\\
National Center for\\ Computational Toxicology\\
US Environmental Protection Agency
}
\Plainauthor{Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer}
\Abstract{This document describes how to use the \pkg{deSolve} package
\citep{deSolve_jss} to solve models that are written in \proglang{FORTRAN} or
\proglang{C}.}
%% The address of (at least) one author should be given
%% in the following format:
\Address{
Karline Soetaert\\
Royal Netherlands Institute of Sea Research (NIOZ)\\
4401 NT Yerseke, Netherlands \\
E-mail: \email{karline.soetaert@nioz.nl}\\
URL: \url{https://www.nioz.nl}\\
\\
Thomas Petzoldt\\
Institut f\"ur Hydrobiologie\\
Technische Universit\"at Dresden\\
01062 Dresden, Germany\\
E-mail: \email{thomas.petzoldt@tu-dresden.de}\\
URL: \url{https://tu-dresden.de/Members/thomas.petzoldt/}\\
\\
R. Woodrow Setzer\\
National Center for Computational Toxicology\\
US Environmental Protection Agency
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% R/Sweave specific LaTeX commands.
%% need no \usepackage{Sweave}
%\VignetteIndexEntry{R Package deSolve: Writing Code in Compiled Languages}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Begin of the document
\begin{document}
\SweaveOpts{engine=R,eps=FALSE}
<<preliminaries,echo=FALSE,results=hide>>=
library("deSolve")
options(prompt = "R> ")
options(width=70)
@
\maketitle
\section{Introduction}
\pkg{deSolve} \citep{deSolve_jss,deSolve}, the successor of \proglang{R} package
\pkg{odesolve} \citep{Setzer01} is a package to solve ordinary
differential equations (ODE), differential algebraic equations (DAE)
and partial differential equations (PDE).
One of the prominent features of \pkg{deSolve} is that it allows
specifying the differential equations either as:
\begin{itemize}
\item pure \proglang{R} code \citep{Rcore},
\item functions defined in lower-level languages such as
\proglang{FORTRAN}, \proglang{C}, or \proglang{C++}, which are
compiled into a dynamically linked library (DLL) and loaded into
\proglang{R}.
\end{itemize}
In what follows, these implementations will be referred to as \Rmodels
and \DLLmodels respectively.
Whereas \Rmodels are easy to implement, they allow simple interactive
development, produce highly readible code and access to \proglang{R}s
high-level procedures, \DLLmodels have the benefit of increased
simulation speed. Depending on the problem, there may be a gain of up
to several orders of magnitude computing time when using compiled
code.
Here are some rules of thumb when it is worthwhile or not to switch to
\DLLmodels:
\begin{itemize}
\item As long as one makes use only of \proglang{R}s high-level
commands, the time gain will be modest. This was demonstrated in
\citet{deSolve_jss}, where a formulation of two interacting
populations dispersing on a 1-dimensional or a 2-dimensional grid
led to a time gain of a factor two only when using \DLLmodels.
\item Generally, the more statements in the model, the higher will be
the gain of using compiled code. Thus, in the same paper
\citep{deSolve_jss}, a very simple, 0-D, Lotka-Volterrra type of model
describing only 2 state variables was solved 50 times faster when
using compiled code.
\item As even \Rmodels are quite performant, the time gain induced by
compiled code will often not be discernible when the model is only
solved once (who can grasp the difference between a run taking 0.001
or 0.05 seconds to finish). However, if the model is to be applied
multiple times, e.g. because the model is to be fitted to data, or
its sensitivity is to be tested, then it may be worthwhile to
implement the model in a compiled language.
\end{itemize}
Starting from \pkg{deSolve} version 1.4, it is now also possible to use
\emph{forcing functions} in compiled code. These forcing functions are
automatically updated by the integrators. See last chapter.
\section{A simple ODE example}
Assume the following simple ODE (which is from the \code{LSODA} source
code):
\begin{align*}
\frac{{dy_1}}{{dt}} &= - k_1 \cdot y_1 + k_2 \cdot y_2 \cdot y_3 \\
\frac{{dy_2}}{{dt}} &= k_1 \cdot y_1 - k_2 \cdot y_2 \cdot y_3 - k_3 \cdot y_2 \cdot y_2 \\
\frac{{dy_3}}{{dt}} &= k_3 \cdot y_2 \cdot y_2 \\
\end{align*}
where $y_1$, $y_2$ and $y_3$ are state variables, and $k_1$, $k_2$ and
$k_3$ are parameters.
We first implement and run this model in pure \proglang{R}, then show
how to do this in \proglang{C} and in \proglang{FORTRAN}.
\subsection{ODE model implementation in R}
An ODE model implemented in \textbf{pure \proglang{R}} should be
defined as:
\begin{verbatim}
yprime = func(t, y, parms, ...)
\end{verbatim}
where \code{t} is the current time point in the integration, \code{y}
is the current estimate of the variables in the ODE system, and
\code{parms} is a vector or list containing the parameter
values. The optional dots argument (\code{\dots}) can be used to pass any other arguments to the
function. The return value of \code{func} should be a list, whose
first element is a vector containing the derivatives of \code{y} with
respect to time, and whose next elements contain output variables that
are required at each point in time.
The \proglang{R} implementation of the simple ODE is given below:
<<the_Rmodel>>=
model <- function(t, Y, parameters) {
with (as.list(parameters),{
dy1 = -k1*Y[1] + k2*Y[2]*Y[3]
dy3 = k3*Y[2]*Y[2]
dy2 = -dy1 - dy3
list(c(dy1, dy2, dy3))
})
}
@
The Jacobian ($\frac{{\partial y'}}{{\partial y}}$) associated to the
above example is:
<<Jacobian_in_R>>=
jac <- function (t, Y, parameters) {
with (as.list(parameters),{
PD[1,1] <- -k1
PD[1,2] <- k2*Y[3]
PD[1,3] <- k2*Y[2]
PD[2,1] <- k1
PD[2,3] <- -PD[1,3]
PD[3,2] <- k3*Y[2]
PD[2,2] <- -PD[1,2] - PD[3,2]
return(PD)
})
}
@
This model can then be run as follows:
<<Run_Rmodel>>=
parms <- c(k1 = 0.04, k2 = 1e4, k3=3e7)
Y <- c(1.0, 0.0, 0.0)
times <- c(0, 0.4*10^(0:11))
PD <- matrix(nrow = 3, ncol = 3, data = 0)
out <- ode(Y, times, model, parms = parms, jacfunc = jac)
@
\subsection{ODE model implementation in C}
\label{sec:Cexamp}
In order to create compiled models (.DLL = dynamic link libraries on
Windows or .so = shared objects on other systems) you must have a
recent version of the GNU compiler suite installed, which is quite
standard for Linux. Windows users find all the required tools on
\url{https://cran.r-project.org/bin/windows/Rtools/}. Getting DLLs
produced by other compilers to communicate with R is much more
complicated and therefore not recommended. More details can be found
on \url{https://cran.r-project.org/doc/manuals/R-admin.html}.
The call to the derivative and Jacobian function is more complex for
compiled code compared to \proglang{R}-code, because it has to comply
with the interface needed by the integrator source codes.
Below is an implementation of this model in \proglang{C}:
\verbatiminput{mymod.c}
The implementation in \proglang{C} consists of three parts:
\begin{enumerate}
\item After defining the parameters in global \proglang{C}-variables,
through the use of \code{\#define} statements, a function called
\code{initmod} initialises the parameter values, passed from the
\proglang{R}-code.
This function has as its sole argument a pointer to
\proglang{C}-function \code{odeparms} that fills a double array with
double precision values, to copy the parameter values into the
global variable.
\item Function \code{derivs} then calculates the values of the
derivatives. The derivative function is defined as:
\begin{verbatim}
void derivs (int *neq, double *t, double *y, double *ydot,
double *yout, int *ip)
\end{verbatim}
where \code{*neq} is the number of equations, \code{*t} is the value
of the independent variable, \code{*y} points to a double precision
array of length \code{*neq} that contains the current value of the
state variables, and \code{*ydot} points to an array that will
contain the calculated derivatives.
\code{*yout} points to a double precision vector whose first
\code{nout} values are other output variables (different from the
state variables \code{y}), and the next values are double precision values
as passed by parameter \code{rpar} when calling the integrator. The
key to the elements of \code{*yout} is set in \code{*ip}
\code{*ip} points to an integer vector whose length is at least 3;
the first element (\code{ip[0]}) contains the number of output
values (which should be equal or larger than \code{nout}), its
second element contains the length of \code{*yout}, and the third
element contains the length of \code{*ip}; next are integer values,
as passed by parameter \code{ipar} when calling the
integrator.\footnote{Readers familiar with the source code of the
\pkg{ODEPACK} solvers may be surprised to find the double
precision vector \code{yout} and the integer vector \code{ip} at
the end. Indeed none of the \pkg{ODEPACK} functions allow this,
although it is standard in the \code{vode} and \code{daspk} codes.
To make all integrators compatible, we have altered the
\pkg{ODEPACK} \proglang{FORTRAN} codes to consistently pass these
vectors.}
Note that, in function \code{derivs}, we start by checking whether
enough memory is allocated for the output variables (\code{if (ip[0] <
1)}), else an error is passed to \proglang{R} and the integration
is stopped.
\item In \proglang{C}, the call to the function that generates the
Jacobian is as:
\begin{verbatim}
void jac(int *neq, double *t, double *y, int *ml,
int *mu, double *pd, int *nrowpd, double *yout, int *ip)
\end{verbatim}
where \code{*ml} and \code{*mu} are the number of non-zero bands
below and above the diagonal of the Jacobian respectively. These
integers are only relevant if the option of a banded Jacobian is
selected. \code{*nrow} contains the number of rows of the Jacobian.
Only for full Jacobian matrices, is this equal to \code{*neq}. In
case the Jacobian is banded, the size of \code{*nrowpd} depends on the
integrator. If the method is one of \code{lsode, lsoda, vode},
then \code{*nrowpd} will be equal to
\code{*mu + 2 * *ml + 1}, where the last \code{*ml} rows should be
filled with $0$s.
For \code{radau}, \code{*nrowpd} will be equal to \code{*mu + *ml + 1}
See example ``odeband'' in the directory \url{doc/examples/dynload},
and chapter \ref{band}.
\end{enumerate}
\subsection{ODE model implementation in FORTRAN}
\label{sec:forexamp}
Models may also be defined in \proglang{FORTRAN}.
\verbatiminput{mymod.f}
In \proglang{FORTRAN}, parameters may be stored in a common block
(here called \code{myparms}). During the initialisation, this common
block is defined to consist of a 3-valued vector (unnamed), but in the
subroutines \code{derivs} and \code{jac}, the parameters are given a
name (\code{k1}, ...).
\subsection{Running ODE models implemented in compiled code}
To run the models described above, the code in \code{mymod.f} and
\code{mymod.c} must first be compiled\footnote{This requires a
correctly installed GNU compiler, see above.}.
This can simply be done in \proglang{R} itself, using the
\code{system} command:
<<compile_DLLmodel_F,eval=FALSE>>=
system("R CMD SHLIB mymod.f")
@
for the \proglang{FORTRAN} code or
<<compile_DLLmodel_C,eval=FALSE>>=
system("R CMD SHLIB mymod.c")
@
for the \proglang{C} code.
This will create file \code{mymod.dll} on windows, or \code{mymod.so} on
other platforms.
We load the DLL, in windows as:
\begin{verbatim}
dyn.load("mymod.dll")
\end{verbatim}
and in unix:
\begin{verbatim}
dyn.load("mymod.so")
\end{verbatim}
or, using a general statement:
\begin{verbatim}
dyn.load(paste("mymod", .Platform$dynlib.ext, sep = ""))
\end{verbatim}
The model can now be run as follows:
\begin{verbatim}
parms <- c(k1 = 0.04, k2 = 1e4, k3=3e7)
Y <- c(y1 = 1.0, y2 = 0.0, y3 = 0.0)
times <- c(0, 0.4*10^(0:11) )
out <- ode(Y, times, func = "derivs", parms = parms,
jacfunc = "jac", dllname = "mymod",
initfunc = "initmod", nout = 1, outnames = "Sum")
\end{verbatim}
The integration routine (here \code{ode}) recognizes that the model is
specified as a DLL due to the fact that arguments \code{func} and
\code{jacfunc} are not regular \proglang{R}-functions but character
strings. Thus, the integrator will check whether the function is
loaded in the DLL with name \code{mymod}.
Note that \code{mymod}, as specified by \code{dllname} gives the name of
the shared library \emph{without extension}. This DLL should contain
all the compiled function or subroutine definitions referred to in
\code{func}, \code{jacfunc} and \code{initfunc}.
Also, if \code{func} is specified in compiled code, then
\code{jacfunc} and \code{initfunc} (if present) should also be
specified in a compiled language. It is not allowed to mix
\proglang{R}-functions and compiled functions.
Note also that, when invoking the integrator, we have to specify the
number of ordinary output variables, \code{nout}. This is because the
integration routine has to allocate memory to pass these output
variables back to \proglang{R}. There is no way to check for the
number of output variables in a DLL automatically. If in the calling
of the integration routine the number of output variables is too low,
then \proglang{R} may freeze and need to be terminated! Therefore it
is advised that one checks in the code whether \code{nout} has been specified
correctly. In the \proglang{FORTRAN} example above, the statement
\code{if (ip(1) < 1) call rexit("nout should be at least 1")} does
this. Note that it is not an error (just a waste of memory) to set
\code{nout} to a too large value.
Finally, in order to label the output matrix, the names of the ordinary
output variables have to be passed explicitly (\code{outnames}). This is not
necessary for the state variables, as their names are known through their
initial condition (\code{y}).
\section{Alternative way of passing parameters and data in compiled code}
\label{sec:parms}
All of the solvers in \pkg{deSolve} take an argument \code{parms}
which may be an arbitrary \proglang{R} object. In models defined in
\proglang{R} code, this argument is passed unprocessed to the various
functions that make up the model. It is possible, as well, to pass
such R-objects to models defined in native code.
The problem is that data passed to, say, \code{ode} in the argument
\code{parms} is not visible by default to the routines that define the
model. This is handled by a user-written initialization function, for
example \code{initmod} in the \proglang{C} and \proglang{FORTRAN}
examples from sections \ref{sec:Cexamp} and \ref{sec:forexamp}.
However, these set only the \emph{values} of the parameters.
R-objects have many attributes that may also be of interest. To have access
to these, we need to do more work, and this mode of passing parameters and
data is much more complex than what we saw in previous chapters.
In \proglang{C}, the initialization routine is declared:
\begin{verbatim}
void initmod(void (* odeparms)(int *, double *));
\end{verbatim}
That is, \code{initmod} has a single argument, a pointer to a function
that has as arguments a pointer to an \texttt{int} and a pointer to a
\texttt{double}. In \proglang{FORTRAN}, the initialization routine has
a single argument, a subroutine declared to be external. The name of
the initialization function is passed as an argument to the
\pkg{deSolve} solver functions.
In \proglang{C}, two approaches are available for making the values
passed in \code{parms} visible to the model routines, while only the
simpler approach is available in \proglang{FORTRAN}. The simpler
requires that \code{parms} be a numeric vector. In \proglang{C}, the
function passed from \pkg{deSolve} to the initialization function
(called \code{odeparms} in the example) copies the values from the
parameter vector to a static array declared globally in the file where
the model is defined. In \proglang{FORTRAN}, the values are copied
into a \code{COMMON} block.
It is possible to pass more complicated structures to \proglang{C}
functions. Here is an example, an initializer called
\code{deltamethrin} from a model describing the pharmacokinetics of
that pesticide:
\begin{verbatim}
#include <R.h>
#include <Rinternals.h>
#include <R_ext/Rdynload.h>
#include "deltamethrin.h"
/* initializer */
void deltamethrin(void(* odeparms)(int *, double *))
{
int Nparms;
DL_FUNC get_deSolve_gparms;
SEXP gparms;
get_deSolve_gparms = R_GetCCallable("deSolve","get_deSolve_gparms");
gparms = get_deSolve_gparms();
Nparms = LENGTH(gparms);
if (Nparms != N_PARMS) {
PROBLEM "Confusion over the length of parms"
ERROR;
} else {
_RDy_deltamethrin_parms = REAL(gparms);
}
}
\end{verbatim}
In \texttt{deltamethrin.h}, the variable
\code{\_RDy\_deltamethrin\_parms} and macro N\_PARMS are declared:
\begin{verbatim}
#define N_PARMS 63
static double *_RDy_deltamethrin_parms;
\end{verbatim}
The critical element of this method is the function
\code{R\_GetCCallable} which returns a function (called
\code{get\_deSolve\_gparms} in this implementation) that returns the
parms argument as a \code{SEXP} data type. In this example,
\code{parms} was just a real vector, but in principle, this method can
handle arbitrarily complex objects. For more detail on handling
\proglang{R} objects in native code, see \proglang{R} Development Core
Team (2008).
\section{deSolve integrators that support DLL models}
In the most recent version of \pkg{deSolve} all integration routines
can solve \DLLmodels. They are:
\begin{itemize}
\item all solvers of the \code{lsode} familiy: \code{lsoda},
\code{lsode}, \code{lsodar}, \code {lsodes},
\item \code{vode}, \code{zvode},
\item \code{daspk},
\item \code{radau},
\item the Runge-Kutta integration routines (including the Euler method).
\end{itemize}
For some of these solvers the interface is slightly different
(e.g. \code{zvode, daspk}), while in others (\code{lsodar}, \code{lsodes})
different functions can be defined. How this is implemented in a
compiled language is discussed next.
\subsection{Complex numbers, function zvode}
\code{zvode} solves ODEs that are composed of complex variables.
The program below uses \code{zvode} to solve the following system of
2 ODEs:
\begin{align*}
\frac{{dz}}{{dt}} &= i \cdot z\\
\frac{{dw}}{{dt}} &= -i \cdot w \cdot w \cdot z\\
\end{align*}
where
\begin{align*}
w(0) = 1/2.1 +0i\\
z(0) = 1i
\end{align*}
on the interval t = [0, 2 $\pi$]
The example is implemented in \proglang{FORTRAN}%
\footnote{this can be found in file "zvodedll.f",
in the dynload subdirectory of the package},
\code{FEX} implements the function \code{func}:
\begin{verbatim}
SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)
INTEGER NEQ, IPAR(*)
DOUBLE COMPLEX Y(NEQ), YDOT(NEQ), RPAR(*), CMP
DOUBLE PRECISION T
character(len=100) msg
c the imaginary unit i
CMP = DCMPLX(0.0D0,1.0D0)
YDOT(1) = CMP*Y(1)
YDOT(2) = -CMP*Y(2)*Y(2)*Y(1)
RETURN
END
\end{verbatim}
\code{JEX} implements the function \code{jacfunc}
\begin{verbatim}
SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)
INTEGER NEQ, ML, MU, NRPD, IPAR(*)
DOUBLE COMPLEX Y(NEQ), PD(NRPD,NEQ), RPAR(*), CMP
DOUBLE PRECISION T
c the imaginary unit i
CMP = DCMPLX(0.0D0,1.0D0)
PD(2,3) = -2.0D0*CMP*Y(1)*Y(2)
PD(2,1) = -CMP*Y(2)*Y(2)
PD(1,1) = CMP
RETURN
END
\end{verbatim}
Assuming this code has been compiled and is in a DLL called "zvodedll.dll",
this model is solved in R as follows:
\begin{verbatim}
dyn.load("zvodedll.dll")
outF <- zvode(func = "fex", jacfunc = "jex", y = yini, parms = NULL,
times = times, atol = 1e-10, rtol = 1e-10, dllname = "zvodedll",
initfunc = NULL)
\end{verbatim}
Note that in \proglang{R} names of \proglang{FORTRAN} DLL functions
(e.g. for \code{func} and \code{jacfunc}) have to be given in
lowercase letters, even if they are defined upper case in
\proglang{FORTRAN}.
Also, there is no initialiser function here (\code{initfunc = NULL}).
\subsection{DAE models, integrator daspk}
\code{daspk} is one of the integrators in the package that solve DAE
models. In order to be used with DASPK, DAEs are specified in implicit
form: \[0 = F(t, y, y', p)\] i.e. the DAE function (passed via argument
\code{res}) specifies the ``residuals'' rather than the derivatives (as for ODEs).
Consequently the DAE function specification in a compiled language is
also different. For code written in \proglang{C}, the calling
sequence for \code{res} must be:
\begin{verbatim}
void myres(double *t, double *y, double *ydot, double *cj,
double *delta, int *ires, double *yout, int *ip)
\end{verbatim}
where \code{*t} is the value of the independent variable, \code{*y}
points to a double precision vector that contains the current value of
the state variables, \code{*ydot} points to an array that will contain
the derivatives, \code{*delta} points to a vector that will contain the
calculated residuals. \code{*cj} points to a scalar, which is normally
proportional to the inverse of the stepsize, while \code{*ires} points
to an integer (not used). \code{*yout} points to any other output
variables (different from the state variables y), followed by the
double precision values as passed via argument \code{rpar}; finally
\code{*ip} is an integer vector containing at least 3 elements, its
first value (\code{*ip[0]}) equals the number of output variables,
calculated in the function (and which should be equal to \code{nout}),
its second element equals the total length of \code{*yout}, its third
element equals the total length of \code{*ip}, and finally come the
integer values as passed via argument \code{ipar}.
For code written in \proglang{FORTRAN}, the calling sequence for
\code{res} must be as in the following example:
\begin{verbatim}
subroutine myresf(t, y, ydot, cj, delta, ires, out, ip)
integer :: ires, ip(*)
integer, parameter :: neq = 3
double precision :: t, y(neq), ydot(neq), delta(neq), out(*)
double precision :: K, ka, r, prod, ra, rb
common /myparms/K,ka,r,prod
if(ip(1) < 1) call rexit("nout should be at least 1")
ra = ka* y(3)
rb = ka/K *y(1) * y(2)
!! residuals of rates of changes
delta(3) = -ydot(3) - ra + rb + prod
delta(1) = -ydot(1) + ra - rb
delta(2) = -ydot(2) + ra - rb - r*y(2)
out(1) = y(1) + y(2) + y(3)
return
end
\end{verbatim}
Similarly as for the ODE model discussed above, the parameters are
kept in a common block which is initialised by an initialiser
subroutine:
\begin{verbatim}
subroutine initpar(daspkparms)
external daspkparms
integer, parameter :: N = 4
double precision parms(N)
common /myparms/parms
call daspkparms(N, parms)
return
end
\end{verbatim}
See the ODE example for how to initialise parameter values in
\proglang{C}.
Similarly, the function that specifies the Jacobian in a DAE differs
from the Jacobian when the model is an ODE. The DAE Jacobian is set
with argument \code{jacres} rather than \code{jacfunc} when an ODE.
For code written in \proglang{FORTRAN}, the \code{jacres} must be as:
\begin{verbatim}
subroutine resjacfor (t, y, dy, pd, cj, out, ipar)
integer, parameter :: neq = 3
integer :: ipar(*)
double precision :: K, ka, r, prod
double precision :: pd(neq,neq),y(neq),dy(neq),out(*)
common /myparms/K,ka,r,prod
!res1 = -dD - ka*D + ka/K *A*B + prod
PD(1,1) = ka/K *y(2)
PD(1,2) = ka/K *y(1)
PD(1,3) = -ka -cj
!res2 = -dA + ka*D - ka/K *A*B
PD(2,1) = -ka/K *y(2) -cj
PD(2,2) = -ka/K *y(2)
PD(2,3) = ka
!res3 = -dB + ka*D - ka/K *A*B - r*B
PD(3,1) = -ka/K *y(2)
PD(3,2) = -ka/K *y(2) -r -cj
PD(3,3) = ka
return
end
\end{verbatim}
\subsection{DAE models, integrator radau}
Function \code{radau} solves DAEs in linearly implicit form, i.e. in the form
$M y' = f(t, y, p)$.
The derivative function $f$ is specified in the same way as for an ODE, i.e.
\begin{verbatim}
void derivs (int *neq, double *t, double *y, double *ydot,
double *yout, int *ip)
\end{verbatim}
and
\begin{verbatim}
subroutine derivs (neq, t, y, ydot, out, IP)
\end{verbatim}
for \proglang{C} and \proglang{FORTRAN} code respectively.
To show how it should be used, we implement the caraxis problem as in
\citep{testset}. The implementation of this index 3 DAE, comprising 8
differential, and 2 algebraic equations in R is the last example of the
\code{radau} help page. We first repeat the R implementation:
<<>>=
caraxisfun <- function(t, y, parms) {
with(as.list(c(y, parms)), {
yb <- r * sin(w * t)
xb <- sqrt(L * L - yb * yb)
Ll <- sqrt(xl^2 + yl^2)
Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)
dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr
dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g
dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g
c1 <- xb * xl + yb * yl
c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L
list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2))
})
}
eps <- 0.01; M <- 10; k <- M * eps^2/2;
L <- 1; L0 <- 0.5; r <- 0.1; w <- 10; g <- 1
parameter <- c(eps = eps, M = M, k = k, L = L, L0 = L0,
r = r, w = w, g = g)
yini <- c(xl = 0, yl = L0, xr = L, yr = L0, ul = -L0/L, vl = 0,
ur = -L0/L, vr = 0, lam1 = 0, lam2 = 0)
# the mass matrix
Mass <- diag(nrow = 10, 1)
Mass[5,5] <- Mass[6,6] <- Mass[7,7] <- Mass[8,8] <- M * eps * eps/2
Mass[9,9] <- Mass[10,10] <- 0
Mass
# index of the variables: 4 of index 1, 4 of index 2, 2 of index 3
index <- c(4, 4, 2)
times <- seq(0, 3, by = 0.01)
out <- radau(y = yini, mass = Mass, times = times, func = caraxisfun,
parms = parameter, nind = index)
@
<<label=caraxis,include=FALSE>>=
plot(out, which = 1:4, type = "l", lwd = 2)
@
\setkeys{Gin}{width=0.8\textwidth}
\begin{figure}
\begin{center}
<<label=figcaraxis,fig=TRUE,echo=FALSE, width=13, height=6>>=
<<caraxis>>
@
\end{center}
\caption{Solution of the caraxis model - see text for R-code}
\label{fig:caraxis}
\end{figure}
The implementation in \proglang{FORTRAN} consists of an initialiser function
and a derivative function.
\begin{verbatim}
c----------------------------------------------------------------
c Initialiser for parameter common block
c----------------------------------------------------------------
subroutine initcaraxis(daeparms)
external daeparms
integer, parameter :: N = 8
double precision parms(N)
common /myparms/parms
call daeparms(N, parms)
return
end
c----------------------------------------------------------------
c rate of change
c----------------------------------------------------------------
subroutine caraxis(neq, t, y, ydot, out, ip)
implicit none
integer neq, IP(*)
double precision t, y(neq), ydot(neq), out(*)
double precision eps, M, k, L, L0, r, w, g
common /myparms/ eps, M, k, L, L0, r, w, g
double precision xl, yl, xr, yr, ul, vl, ur, vr, lam1, lam2
double precision yb, xb, Ll, Lr, dxl, dyl, dxr, dyr
double precision dul, dvl, dur, dvr, c1, c2
c expand state variables
xl = y(1)
yl = y(2)
xr = y(3)
yr = y(4)
ul = y(5)
vl = y(6)
ur = y(7)
vr = y(8)
lam1 = y(9)
lam2 = y(10)
yb = r * sin(w * t)
xb = sqrt(L * L - yb * yb)
Ll = sqrt(xl**2 + yl**2)
Lr = sqrt((xr - xb)**2 + (yr - yb)**2)
dxl = ul
dyl = vl
dxr = ur
dyr = vr
dul = (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl = (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k*g
dur = (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr = (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k*g
c1 = xb * xl + yb * yl
c2 = (xl - xr)**2 + (yl - yr)**2 - L * L
c function values in ydot
ydot(1) = dxl
ydot(2) = dyl
ydot(3) = dxr
ydot(4) = dyr
ydot(5) = dul
ydot(6) = dvl
ydot(7) = dur
ydot(8) = dvr
ydot(9) = c1
ydot(10) = c2
return
end
\end{verbatim}
Assuming that the code is in file ``radaudae.f'', this model is compiled,
loaded and solved in R as:
\begin{verbatim}
system("R CMD SHLIB radaudae.f")
dyn.load(paste("radaudae", .Platform$dynlib.ext, sep = ""))
outDLL <- radau(y = yini, mass = Mass, times = times, func = "caraxis",
initfunc = "initcaraxis", parms = parameter,
dllname = "radaudae", nind = index)
dyn.unload(paste("radaudae", .Platform$dynlib.ext, sep = ""))
\end{verbatim}
\subsection{The root function from integrators lsodar and lsode}
\code{lsodar} is an extended version of integrator \code{lsoda} that
includes a root finding function. This function is spedified via
argument \code{rootfunc}. In \code{deSolve} version 1.7, \code{lsode}
has also been extended with root finding capabilities.
Here is how to program such a function in a lower-level language. For
code written in \proglang{C}, the calling sequence for \code{rootfunc}
must be:
\begin{verbatim}
void myroot(int *neq, double *t, double *y, int *ng, double *gout,
double *out, int *ip )
\end{verbatim}
where \code{*neq} and \code{*ng} are the number of state variables and
root functions respectively, \code{*t} is the value of the independent
variable, \code{y} points to a double precision array that contains
the current value of the state variables, and \code{gout} points to an
array that will contain the values of the constraint function whose
root is sought. \code{*out} and \code{*ip} are a double precision and
integer vector respectively, as described in the ODE example above.
For code written in \proglang{FORTRAN}, the calling sequence for
\code{rootfunc} must be as in following example:
\begin{verbatim}
subroutine myroot(neq, t, y, ng, gout, out, ip)
integer :: neq, ng, ip(*)
double precision :: t, y(neq), gout(ng), out(*)
gout(1) = y(1) - 1.e-4
gout(2) = y(3) - 1e-2
return
end
\end{verbatim}
\subsection{jacvec, the Jacobian vector for integrator lsodes}
Finally, in integration function \code{lsodes}, not the Jacobian
\emph{matrix} is specified, but a \emph{vector}, one for each column of the
Jacobian. This function is specified via argument \code{jacvec}.
In \proglang{FORTRAN}, the calling sequence for \code{jacvec} is:
\begin{verbatim}
SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ, OUT, IP)
DOUBLE PRECISION T, Y(*), IAN(*), JAN(*), PDJ(*), OUT(*)
INTEGER NEQ, J, IP(*)
\end{verbatim}
\subsection{Banded jacobians in compiled code}\label{band}
In the call of the jacobian function, the number of bands below and above the
diagonal (\code{ml, mu}) and the number of rows of the Jacobian matrix,
\code{nrowPD} is specified, e.g. for \proglang{FORTRAN} code:
\begin{verbatim}
SUBROUTINE JAC (neq, T, Y, ml, mu, PD, nrowPD, RPAR, IPAR)
\end{verbatim}
The jacobian matrix to be returned should have dimension \code{nrowPD, neq}.
In case the Jacobian is banded, the size of \code{nrowPD} depends on the
integrator. If the method is one of \code{lsode, lsoda, vode}, or related,
then \code{nrowPD} will be equal to \code{mu + 2 * ml + 1}, where the
last ml rows should be filled with $0$s.
For \code{radau}, \code{nrowpd} will be equal to \code{mu + ml + 1}
Thus, it is important to write the FORTRAN or C-code in such a way that
it can be used with both types of integrators - else it is likely that
R will freeze if the wrong integrator is used.
We implement in FORTRAN, the example of the \code{lsode} help file.
The R-code reads:
<<>>=
## the model, 5 state variables
f1 <- function (t, y, parms) {
ydot <- vector(len = 5)
ydot[1] <- 0.1*y[1] -0.2*y[2]
ydot[2] <- -0.3*y[1] +0.1*y[2] -0.2*y[3]
ydot[3] <- -0.3*y[2] +0.1*y[3] -0.2*y[4]
ydot[4] <- -0.3*y[3] +0.1*y[4] -0.2*y[5]
ydot[5] <- -0.3*y[4] +0.1*y[5]
return(list(ydot))
}
## the Jacobian, written in banded form
bandjac <- function (t, y, parms) {
jac <- matrix(nrow = 3, ncol = 5, byrow = TRUE,
data = c( 0 , -0.2, -0.2, -0.2, -0.2,
0.1, 0.1, 0.1, 0.1, 0.1,
-0.3, -0.3, -0.3, -0.3, 0))
return(jac)
}
## initial conditions and output times
yini <- 1:5
times <- 1:20
## stiff method, user-generated banded Jacobian
out <- lsode(yini, times, f1, parms = 0, jactype = "bandusr",
jacfunc = bandjac, bandup = 1, banddown = 1)
@
In FORTRAN, the code might look like this:
\begin{verbatim}
c Rate of change
subroutine derivsband (neq, t, y, ydot,out,IP)
integer neq, IP(*)
DOUBLE PRECISION T, Y(5), YDOT(5), out(*)
ydot(1) = 0.1*y(1) -0.2*y(2)
ydot(2) = -0.3*y(1) +0.1*y(2) -0.2*y(3)
ydot(3) = -0.3*y(2) +0.1*y(3) -0.2*y(4)
ydot(4) = -0.3*y(3) +0.1*y(4) -0.2*y(5)
ydot(5) = -0.3*y(4) +0.1*y(5)
RETURN
END
c The banded jacobian
subroutine jacband (neq, t, y, ml, mu, pd, nrowpd, RP, IP)
INTEGER neq, ml, mu, nrowpd, ip(*)
DOUBLE PRECISION T, Y(5), PD(nrowpd,5), rp(*)
PD(:,:) = 0.D0
PD(1,1) = 0.D0
PD(1,2) = -.02D0
PD(1,3) = -.02D0
PD(1,4) = -.02D0
PD(1,5) = -.02D0
PD(2,:) = 0.1D0
PD(3,1) = -0.3D0
PD(3,2) = -0.3D0
PD(3,3) = -0.3D0
PD(3,4) = -0.3D0
PD(3,5) = 0.D0
RETURN
END
\end{verbatim}
Assuming that this code is in file \code{"odeband.f"}, we compile from within
R and load the shared library (assuming the working directory holds the
source file) with:
\begin{verbatim}
system("R CMD SHLIB odeband.f")
dyn.load(paste("odeband", .Platform$dynlib.ext, sep = ""))
\end{verbatim}
To solve this problem, we write in R
\begin{verbatim}
out2 <- lsode(yini, times, "derivsband", parms = 0, jactype = "bandusr",
jacfunc = "jacband", bandup = 1, banddown = 1, dllname = "odeband")
out2 <- radau(yini, times, "derivsband", parms = 0, jactype = "bandusr",
jacfunc = "jacband", bandup = 1, banddown = 1, dllname = "odeband")
\end{verbatim}
This will work both for the \code{lsode} family as for \code{radau}.
In the first case, when entering subroutine \code{jacband}, \code{nrowpd} will
have the value $5$, in the second case, it will be equal to $4$.
\section{Testing functions written in compiled code}
Two utilities have been included to test the function implementation
in compiled code:
\begin{itemize}
\item \code{DLLfunc} to test the implementation of the derivative
function as used in ODEs. This function returns the derivative
$\frac{dy}{dt}$ and the output variables.
\item \code{DLLres} to test the implementation of the residual function
as used in DAEs. This function returns the residual function
$\frac{dy}{dt}-f(y,t)$ and the output variables.
\end{itemize}
These functions serve no other purpose than to test whether the
compiled code returns what it should.
\subsection{DLLfunc}
We test whether the ccl4 model, which is part of \code{deSolve}
package, returns the proper rates of changes. (Note: see
\code{example(ccl4model)} for a more comprehensive implementation)
<<>>=
## Parameter values and initial conditions
Parms <- c(0.182, 4.0, 4.0, 0.08, 0.04, 0.74, 0.05, 0.15, 0.32,
16.17, 281.48, 13.3, 16.17, 5.487, 153.8, 0.04321671,
0.4027255, 1000, 0.02, 1.0, 3.8)
yini <- c( AI=21, AAM=0, AT=0, AF=0, AL=0, CLT=0, AM=0 )
## the rate of change
DLLfunc(y = yini, dllname = "deSolve", func = "derivsccl4",
initfunc = "initccl4", parms = Parms, times = 1,
nout = 3, outnames = c("DOSE", "MASS", "CP") )
@
\subsection{DLLres}
The deSolve package contains a FORTRAN implementation of the chemical
model described above (section 4.1), where the production rate is
included as a forcing function (see next section).
Here we use \code{DLLres} to test it:
<<>>=
pars <- c(K = 1, ka = 1e6, r = 1)
## Initial conc; D is in equilibrium with A,B
y <- c(A = 2, B = 3, D = 2*3/pars["K"])
## Initial rate of change
dy <- c(dA = 0, dB = 0, dD = 0)
## production increases with time
prod <- matrix(nc=2,data=c(seq(0,100,by=10),seq(0.1,0.5,len=11)))
DLLres(y=y,dy=dy,times=5,res="chemres",
dllname="deSolve", initfunc="initparms",
initforc="initforcs", parms=pars, forcings=prod,
nout=2, outnames=c("CONC","Prod"))
@
\section{Using forcing functions}
Forcing functions in DLLs are implemented in a similar way as
parameters. This means:
\begin{itemize}
\item They are initialised by means of an initialiser function. Its
name should be passed to the solver via argument \code{initforc}.
Similar as the parameter initialiser function, the function denoted
by \code{initforc} has as its sole argument a pointer to the vector
that contains the forcing funcion values in the compiled code. In
case of \proglang{C} code, this will be a global vector; in case of
\proglang{FORTRAN}, this will be a vector in a common block.
The solver puts a pointer to this vector and updates the forcing
functions in this memory area at each time step. Hence, within the
compiled code, forcing functions can be assessed as if they are
parameters (although, in contrast to the latter, their values will
generally change). No need to update the values for the current
time step; this has been done before entering the \code{derivs}
function.
\item The forcing function data series are passed to the integrator,
via argument \code{forcings}; if there is only one forcing function
data set, then a 2-columned matrix (time, value) will do; else the
data should be passed as a list, containing (time, value) matrices
with the individual forcing function data sets. Note that the data
sets in this list should be \emph{in the same ordering} as the
declaration of the forcings in the compiled code.
\end{itemize}
A number of options allow to finetune certain settings. They are in a
list called \code{fcontrol} which can be supplied as argument when
calling the solvers. The options are similar to the arguments from R
function \code{approx}, howevers the default settings are often
different.
The following options can be specified:
\begin{itemize}
\item \code{method} specifies the interpolation method to be used.
Choices are "linear" or "constant", the default is "linear", which
means linear interpolation (same as \code{approx})
\item \code{rule}, an integer describing how interpolation is to take
place \emph{outside} the interval [min(times), max(times)]. If
\code{rule} is \code{1} then an error will be triggered and the
calculation will stop if extrapolation is necessary. If it is
\code{2}, the default, the value at the closest data extreme is
used, a warning will be printed if \code{verbose} is TRUE.
Note that the default differs from the \code{approx} default.
\item \code{f}, for method=\code{"constant"} is a number between
\code{0} and \code{1} inclusive, indicating a compromise between
left- and right-continuous step functions. If \code{y0} and
\code{y1} are the values to the left and right of the point then the
value is \code{y0*(1-f)+y1*f} so that \code{f=0} is right-continuous
and \code{f=1} is left-continuous. The default is to have
\code{f=0}. For some data sets it may be more realistic to set
\code{f=0.5}.
\item \code{ties}, the handling of tied \code{times} values. Either a
function with a single vector argument returning a single number
result or the string "ordered".
Note that the default is "ordered", hence the existence of ties will
NOT be investigated; in practice this means that, if ties exist, the
first value will be used; if the dataset is not ordered, then
nonsense will be produced.
Alternative values for \code{ties} are \code{mean}, \code{min}
etc... which will average, or take the minimal value if multiple
values exist at one time level.
\end{itemize}
The default settings of \code{fcontrol} are:
\code{fcontrol=list(method="linear", rule = 2, f = 0, ties =
"ordered")}
Note that only ONE specification is allowed, even if there is more
than one forcing function data set. (may/should change in the future).
\subsection{A simple FORTRAN example}
We implement the example from chapter 3 of the book \citep{Soetaert08}
in FORTRAN.
This model describes the oxygen consumption of a (marine) sediment in
response to deposition of organic matter (the forcing function). One
state variable, the organic matter content in the sediment is modeled;
it changes as a function of the deposition \code{Flux} (forcing) and
organic matter decay (first-order decay rate \code{k}).
\[
\frac{dC}{dt}=Flux_t-k \cdot C
\]
with initial condition $C(t=0)=C_0$; the latter is estimated as the
mean of the flux divided by the decay rate.
The FORTRAN code looks like this:
\begin{verbatim}
c Initialiser for parameter common block
subroutine scocpar(odeparms)
external odeparms
integer N
double precision parms(2)
common /myparms/parms
N = 1
call odeparms(N, parms)
return
end
c Initialiser for forcing common block
subroutine scocforc(odeforcs)
external odeforcs
integer N
double precision forcs(1)
common /myforcs/forcs
N = 1
call odeforcs(N, forcs)
return
end
c Rate of change and output variables
subroutine scocder (neq, t, y, ydot,out,IP)
integer neq, IP(*)
double precision t, y(neq), ydot(neq), out(*), k, depo
common /myparms/k
common /myforcs/depo
if(IP(1) < 2) call rexit("nout should be at least 2")
ydot(1) = -k*y(1) + depo
out(1)= k*y(1)
out(2)= depo
return
end
\end{verbatim}
Here the subroutine \code{scocpar} is business as usual; it
initialises the parameter common block (there is only one parameter).
Subroutine \code{odeforcs} does the same for the forcing function,
which is also positioned in a common block, called \code{myforcs}.
This common block is made available in the derivative subroutine (here
called \code{scocder}), where the forcing function is named
\code{depo}.
At each time step, the integrator updates the value of this forcing
function to the correct time point. In this way, the forcing functions
can be used as if they are (time-varying) parameters. All that's left
to do is to pass the forcing function data set and the name of the
forcing function initialiser routine. This is how to do it in R.
First the data are inputted:
<<>>=
Flux <- matrix(ncol=2,byrow=TRUE,data=c(
1, 0.654, 11, 0.167, 21, 0.060, 41, 0.070, 73,0.277, 83,0.186,
93,0.140,103, 0.255, 113, 0.231,123, 0.309,133,1.127,143,1.923,
153,1.091,163,1.001, 173, 1.691,183, 1.404,194,1.226,204,0.767,
214, 0.893,224,0.737, 234,0.772,244, 0.726,254,0.624,264,0.439,
274,0.168,284 ,0.280, 294,0.202,304, 0.193,315,0.286,325,0.599,
335, 1.889,345, 0.996,355,0.681,365,1.135))
head(Flux)
@
and the parameter given a value (there is only one)
<<>>=
parms <- 0.01
@
The initial condition \code{Yini} is estimated as the annual mean of
the Flux and divided by the decay rate (parameter).
<<>>=
meanDepo <- mean(approx(Flux[,1],Flux[,2], xout=seq(1,365,by=1))$y)
Yini <- c(y=meanDepo/parms)
@
After defining the output times, the model is run, using integration routine
\code{ode}.
The \emph{name} of the derivate function \code{"scocder"}, of the dll
\code{"deSolve"}\footnote{this example is made part of the deSolve
package, hence the name of the dll is "deSolve"} and of the
initialiser function \code{"scocpar"} are passed, as in previous
examples.
In addition, the forcing function data set is also passed
(\code{forcings=Flux}) as is the name of the forcing initialisation
function (\code{initforc="scocforc"}).
<<>>=
times <- 1:365
out <- ode(y=Yini, times, func = "scocder",
parms = parms, dllname = "deSolve",
initforc="scocforc", forcings=Flux,
initfunc = "scocpar", nout = 2,
outnames = c("Mineralisation","Depo"))
head(out)
@
Now, the way the forcing functions are interpolated are changed:
Rather than linear interpolation, constant (block, step) interpolation is used.
<<>>=
fcontrol <- list(method="constant")
out2 <- ode(y=Yini, times, func = "scocder",
parms = parms, dllname = "deSolve",
initforc="scocforc", forcings=Flux, fcontrol=fcontrol,
initfunc = "scocpar", nout = 2,
outnames = c("Mineralisation","Depo"))
@
Finally, the results are plotted:
<<label=scoc,include=FALSE>>=
par (mfrow=c(1,2))
plot(out, which = "Depo", col="red",
xlab="days", ylab="mmol C/m2/ d", main="method='linear'")
lines(out[,"time"], out[,"Mineralisation"], lwd=2, col="blue")
legend("topleft",lwd=1:2,col=c("red","blue"), c("Flux","Mineralisation"))
plot(out, which = "Depo", col="red",
xlab="days", ylab="mmol C/m2/ d", main="method='constant'")
lines(out2[,"time"], out2[,"Mineralisation"], lwd=2, col="blue")
@
\setkeys{Gin}{width=0.8\textwidth}
\begin{figure}
\begin{center}
<<label=figscoc,fig=TRUE,echo=FALSE, width=13, height=6>>=
<<scoc>>
@
\end{center}
\caption{Solution of the SCOC model, implemented in compiled code, and
including a forcing function - see text for R-code}
\label{fig:scoc}
\end{figure}
\subsection{An example in C}
Consider the following R-code which implements a
resource-producer-consumer Lotka-Volterra type of model in R (it is a
modified version of the example of function \code{ode}):
<<>>=
SPCmod <- function(t, x, parms, input) {
with(as.list(c(parms, x)), {
import <- input(t)
dS <- import - b*S*P + g*C # substrate
dP <- c*S*P - d*C*P # producer
dC <- e*P*C - f*C # consumer
res <- c(dS, dP, dC)
list(res, signal = import)
})
}
## The parameters
parms <- c(b = 0.1, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)
## vector of timesteps
times <- seq(0, 100, by=0.1)
## external signal with several rectangle impulses
signal <- as.data.frame(list(times = times,
import = rep(0, length(times))))
signal$import <- ifelse((trunc(signal$times) %% 2 == 0), 0, 1)
sigimp <- approxfun(signal$times, signal$import, rule = 2)
## Start values for steady state
xstart <- c(S = 1, P = 1, C = 1)
## Solve model
print (system.time(
out <- ode(y = xstart,times = times,
func = SPCmod, parms, input = sigimp)
))
@
All output is printed at once:
<<label=lv,include=FALSE>>=
plot(out)
@
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
<<label=figlv,fig=TRUE,echo=FALSE>>=
<<lv>>
@
\end{center}
\caption{Solution of the Lotka-Volterra resource (S)-producer (P) -
consumer (C) model with time-variable input (signal) - see text for R-code}
\label{fig:lv}
\end{figure}
The C-code, in file \url{Forcing\_lv.c}, can be found in the packages
\url{/doc/examples/dynload} subdirectory\footnote{this can be opened by typing
\code{browseURL(paste(system.file(package = "deSolve"), "/doc/examples/dynload", sep = ""))}}.
It can be compiled, from within R by
\begin{verbatim}
system("R CMD SHLIB Forcing_lv.c")
\end{verbatim}
After defining the parameter and forcing vectors, and giving them
comprehensible names, the parameter and forcing initialiser functions
are defined (\code{parmsc} and \code{forcc} respectively). Next is the
derivative function, \code{derivsc}.
\begin{verbatim}
#include <R.h>
static double parms[6];
static double forc[1];
/* A trick to keep up with the parameters and forcings */
#define b parms[0]
#define c parms[1]
#define d parms[2]
#define e parms[3]
#define f parms[4]
#define g parms[5]
#define import forc[0]
/* initializers: */
void odec(void (* odeparms)(int *, double *))
{
int N=6;
odeparms(&N, parms);
}
void forcc(void (* odeforcs)(int *, double *))
{
int N=1;
odeforcs(&N, forc);
}
/* derivative function */
void derivsc(int *neq, double *t, double *y, double *ydot,
double *yout, int*ip)
{
if (ip[0] <2) error("nout should be at least 2");
ydot[0] = import - b*y[0]*y[1] + g*y[2];
ydot[1] = c*y[0]*y[1] - d*y[2]*y[1];
ydot[2] = e*y[1]*y[2] - f*y[2];
yout[0] = y[0] + y[1] + y[2];
yout[1] = import;
}
\end{verbatim}
After defining the forcing function time series, which is to be
interpolated by the integration routine, and loading the DLL, the
model is run:
\begin{verbatim}
Sigimp <- approx(signal$times, signal$import, xout=ftime,rule = 2)$y
forcings <- cbind(ftime,Sigimp)
dyn.load("Forcing_lv.dll")
out <- ode(y=xstart, times, func = "derivsc",
parms = parms, dllname = "Forcing_lv",initforc = "forcc",
forcings=forcings, initfunc = "parmsc", nout = 2,
outnames = c("Sum","signal"), method = rkMethod("rk34f"))
dyn.unload("Forcing_lv.dll")
\end{verbatim}
This code executes about 30 times faster than the \proglang{R}-code.
With a longer simulation time, the difference becomes more pronounced,
e.g. with times till 800 days, the DLL code executes 200 times faster%
\footnote{this is due to the sequential update of the forcing
functions by the solvers, compared to the bisectioning approach used
by approxfun}.
\section{Implementing events in compiled code}
An \code{event} occurs when the value of a state variable is suddenly changed,
e.g. a certain amount is added, or part is removed. The integration
routines cannot deal easily with such state variable changes. Typically these
events occur only at specific times.
In \code{deSolve}, events can be imposed by means of an input file that
specifies at which time a certain state variable is altered, or via
an event function.
Both types of events combine with compiled code.
Take the previous example, the Lotka-Volterra SPC model. Suppose that every
10 days, half of the consumer is removed.
We first implement these events as a \code{data.frame}
<<>>=
eventdata <- data.frame(var=rep("C",10),time=seq(10,100,10),value=rep(0.5,10),
method=rep("multiply",10))
eventdata
@
This model is solved, and plotted as:
\begin{verbatim}
dyn.load("Forcing_lv.dll")
out2 <- ode(y = y, times, func = "derivsc",
parms = parms, dllname = "Forcing_lv", initforc="forcc",
forcings = forcings, initfunc = "parmsc", nout = 2,
outnames = c("Sum", "signal"), events=list(data=eventdata))
dyn.unload("Forcing_lv.dll")
plot(out2, which = c("S","P","C"), type = "l")
\end{verbatim}
The event can also be implemented in \proglang{C} as:
\begin{verbatim}
void event(int *n, double *t, double *y) {
y[2] = y[2]*0.5;
}
\end{verbatim}
Here n is the length of the state variable vector \code{y}.
and is then solved as:
\begin{verbatim}
dyn.load("Forcing_lv.dll")
out3 <- ode(y = y, times, func = "derivsc",
parms = parms, dllname = "Forcing_lv", initforc="forcc",
forcings = forcings, initfunc = "parmsc", nout = 2,
outnames = c("Sum", "signal"),
events = list(func="event",time=seq(10,90,10)))
dyn.unload("Forcing_lv.dll")
\end{verbatim}
\setkeys{Gin}{width=1.0\textwidth}
\begin{figure}
\begin{center}
\includegraphics{comp-event}
\end{center}
\caption{Solution of the Lotka-Volterra resource (S)~-- producer (P)~--
consumer (C) model with time-variable input (signal) and with half of
the consumer removed every 10 days - see text for R-code}
\label{fig:lv2}
\end{figure}
\section{Delay differential equations}
It is now also very simple to implement delay
differential equations in compiled code and solve them with \code{dede}.
In order to do so, you need to get access to the R-functions \code{lagvalue} and \code{lagderiv}
that will give you the past value of the state variable or its derivative
respectively.
\subsection{Delays implemented in Fortran}
If you use \proglang{Fortran}, then the easiest way is to link your code with a file called
\code{dedeUtils.c} that you will find in the packages subdirectory \code{inst/doc/dynload-dede}.
This file contains Fortran-callable interfaces to the delay-differential utility
functions from package \pkg{deSolve}, and that are written in \proglang{C}.
Its content is:
\begin{verbatim}
void F77_SUB(lagvalue)(double *T, int *nr, int *N, double *ytau) {
static void(*fun)(double, int*, int, double*) = NULL;
if (fun == NULL)
fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagvalue");
fun(*T, nr, *N, ytau);
return;
}
void F77_SUB(lagderiv)(double *T, int *nr, int *N, double *ytau) {
static void(*fun)(double, int*, int, double*) = NULL;
if (fun == NULL)
fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagderiv");
fun(*T, nr, *N, ytau);
return;
}
\end{verbatim}
Here \code{T} is the time at which the value needs to be retrieved,
\code{nr} is an integer that defines the number of the state variable or its
derivative whose delay we want, \code{N} is the total number of state variabes
and \code{ytau} will have the result.
We start with an example, a Lotka-Volterra system with delay, that we will implement
in \proglang{Fortran} (you will find this example in the package directory
\code{inst/doc/dynload-dede}, in file \code{dede_lvF.f}
The R-code would be:
<<>>=
derivs <- function(t, y, parms) {
with(as.list(c(y, parms)), {
if (t < tau)
ytau <- c(1, 1)
else
ytau <- lagvalue(t - tau, c(1, 2))
dN <- f * N - g * N * P
dP <- e * g * ytau[1] * ytau[2] - m * P
list(c(dN, dP), tau=ytau[1], tau=ytau[2])
})
}
yinit <- c(N = 1, P = 1)
times <- seq(0, 500)
parms <- c(f = 0.1, g = 0.2, e = 0.1, m = 0.1, tau = .2)
yout <- dede(y = yinit, times = times, func = derivs, parms = parms)
head(yout)
@
In Fortran the code looks like this:
\begin{verbatim}
! file dede_lfF.f
! Initializer for parameter common block
subroutine initmod(odeparms)
external odeparms
double precision parms(5)
common /myparms/parms
call odeparms(5, parms)
return
end
! Derivatives and one output variable
subroutine derivs(neq, t, y, ydot, yout, ip)
integer neq, ip(*)
double precision t, y(neq), ydot(neq), yout(*)
double precision N, P, ytau(2), tlag
integer nr(2)
double precision f, g, e, m, tau
common /myparms/f, g, e, m, tau
if (ip(1) < 2) call rexit("nout should be at least 2")
N = y(1)
P = y(2)
nr(1) = 0
nr(2) = 1
ytau(1) = 1.0
ytau(2) = 1.0
tlag = t - tau
if (tlag .GT. 0.0) call lagvalue(tlag, nr, 2, ytau)
ydot(1) = f * N - g * N * P
ydot(2) = e * g * ytau(1) * ytau(2) - m * P
yout(1) = ytau(1)
yout(2) = ytau(2)
return
end
\end{verbatim}
During compilation, we need to also compile the file \code{dedeUtils.c}. Assuming that the
above \proglang{Fortran} code is in file \code{dede_lvF.f}, which is found in the working directory that
also contains file \code{dedeUtils.c}, the problem is compiled and run as:
\begin{verbatim}
system("R CMD SHLIB dede_lvF.f dedeUtils.c")
dyn.load(paste("dede_lvF", .Platform$dynlib.ext, sep=""))
yout3 <- dede(yinit, times = times, func = "derivs", parms = parms,
dllname = "dede_lvF", initfunc = "initmod", nout = 2)
\end{verbatim}
\subsection{Delays implemented in C}
We now give the same example in \proglang{C}-code (you will find this in directory \code{inst/doc/dynload-dede/dede_lv.c}).
\begin{verbatim}
#include <R.h>
#include <Rinternals.h>
#include <Rdefines.h>
#include <R_ext/Rdynload.h>
static double parms[5];
#define f parms[0]
#define g parms[1]
#define e parms[2]
#define m parms[3]
#define tau parms[4]
/* Interface to dede utility functions in package deSolve */
void lagvalue(double T, int *nr, int N, double *ytau) {
static void(*fun)(double, int*, int, double*) = NULL;
if (fun == NULL)
fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagvalue");
return fun(T, nr, N, ytau);
}
void lagderiv(double T, int *nr, int N, double *ytau) {
static void(*fun)(double, int*, int, double*) = NULL;
if (fun == NULL)
fun = (void(*)(double, int*, int, double*))R_GetCCallable("deSolve", "lagderiv");
return fun(T, nr, N, ytau);
}
/* Initializer */
void initmod(void (* odeparms)(int *, double *)) {
int N = 5;
odeparms(&N, parms);
}
/* Derivatives */
void derivs (int *neq, double *t, double *y, double *ydot,
double *yout, int *ip) {
if (ip[0] < 2) error("nout should be at least 1");
double N = y[0];
double P = y[1];
int Nout = 2; // number of returned lags ( <= n_eq !!)
int nr[2] = {0, 1}; // which lags are needed?
// numbering starts from zero !
double ytau[2] = {1.0, 1.0}; // array; initialize with default values !
double T = *t - tau;
if (*t > tau) {
lagvalue(T, nr, Nout, ytau);
}
ydot[0] = f * N - g * N * P;
ydot[1] = e * g * ytau[0] * ytau[1] - m * P;
yout[0] = ytau[0];
yout[1] = ytau[1];
}
\end{verbatim}
Assuming this code is in a file called \code{dede_lv.c}, which is in the working
directory, this file is then compiled and run as:
\begin{verbatim}
system("R CMD SHLIB dede_lv.c")
dyn.load(paste("dede_lv", .Platform$dynlib.ext, sep=""))
yout2 <- dede(yinit, times = times, func = "derivs", parms = parms,
dllname = "dede_lv", initfunc = "initmod", nout = 2)
dyn.unload(paste("dede_lv", .Platform$dynlib.ext, sep=""))
\end{verbatim}
\section{Difference equations in compiled code}
There is one special-purpose solver, triggered with \code{method = "iteration"}
which can be used in cases where the new values of the state variables are
estimated by the user, and need not be found by integration.
This is for instance useful when the model consists of difference equations,
or for 1-D models when transport is implemented by an implicit or a
semi-implicit method.
An example of a discrete time model, represented by a difference
equation is given in the help file of solver \code{ode}. It consists of the
host-parasitoid model described as from \citet[p283]{Soetaert08}.
We first give the R-code, and how it is solved:
\begin{verbatim}
Parasite <- function (t, y, ks) {
P <- y[1]
H <- y[2]
f <- A * P / (ks +H)
Pnew <- H* (1-exp(-f))
Hnew <- H * exp(rH*(1.-H) - f)
list (c(Pnew, Hnew))
}
rH <- 2.82 # rate of increase
A <- 100 # attack rate
ks <- 15. # half-saturation density
out <- ode (func = Parasite, y = c(P = 0.5, H = 0.5), times = 0:50,
parms = ks, method = "iteration")
\end{verbatim}
Note that the function returns the updated value of the state variables rather
than the rate of change (derivative). The method ``iteration'' does not perform
any integration.
The implementation in \proglang{FORTRAN} consists of an initialisation
function to pass the parameter values (\code{initparms}) and the "update"
function that returns the new values of the state variables (\code{parasite}):
\begin{verbatim}
subroutine initparms(odeparms)
external odeparms
double precision parms(3)
common /myparms/parms
call odeparms(3, parms)
return
end
subroutine parasite (neq, t, y, ynew, out, iout)
integer neq, iout(*)
double precision t, y(neq), ynew(neq), out(*), rH, A, ks
common /myparms/ rH, A, ks
double precision P, H, f
P = y(1)
H = y(2)
f = A * P / (ks + H)
ynew(1) = H * (1.d0 - exp(-f))
ynew(2) = H * exp (rH * (1.d0 - H) - f)
return
end
\end{verbatim}
The model is compiled, loaded and executed in R as:
\begin{verbatim}
system("R CMD SHLIB difference.f")
dyn.load(paste("difference", .Platform$dynlib.ext, sep = ""))
require(deSolve)
rH <- 2.82 # rate of increase
A <- 100 # attack rate
ks <- 15. # half-saturation density
parms <- c(rH = rH, A = A, ks = ks)
out <- ode (func = "parasite", y = c(P = 0.5, H = 0.5), times = 0:50,
initfunc = "initparms", dllname = "difference", parms = parms,
method = "iteration")
\end{verbatim}
\section{Final remark}
Detailed information about communication between \proglang{C},
\proglang{FORTRAN} and \proglang{R} can be found in \citet{Rexts2009}.
Notwithstanding the speed gain when using compiled code, one should
not carelessly decide to always resort to this type of modelling.
Because the code needs to be formally compiled and linked to
\proglang{R} much of the elegance when using pure \proglang{R} models
is lost. Moreover, mistakes are easily made and paid harder in
compiled code: often a programming error will terminate
\proglang{R}. In addition, these errors may not be simple to trace.
\clearpage
%% this adds References to the PDF-Index without adding an obsolete section
\phantomsection
\addcontentsline{toc}{section}{References}
\bibliography{integration}
\end{document}
|