File: hjkb.R

package info (click to toggle)
r-cran-dfoptim 2023.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 140 kB
  • sloc: makefile: 2
file content (174 lines) | stat: -rw-r--r-- 5,325 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
##
##  h o o k e j e e v e s . R  Hooke-Jeeves Minimization Algorithm
##


hjkb <- function(par, fn, lower = -Inf, upper = Inf, control = list(), ...) {
    if (!is.numeric(par))
        stop("Argument 'par' must be a numeric vector.", call. = FALSE)
    n <- length(par)
    if (n == 1)
        stop("For univariate functions use some different method.", call. = FALSE)

    if(!is.numeric(lower) || !is.numeric(upper))
        stop("Lower and upper limits must be numeric.", call. = FALSE)
    if (length(lower) == 1) lower <- rep(lower, n)
    if (length(upper) == 1) upper <- rep(upper, n)
    if (!all(lower <= upper))
        stop("All lower limits must be smaller than upper limits.", call. = FALSE)
    if (!all(lower <= par) || !all(par <= upper))
        stop("Infeasible starting values -- check limits.", call. = FALSE)
    
   
    #-- Control list handling ----------
    cntrl <- list(tol      = 1.e-06,
                  maxfeval = Inf,       # set to Inf if no limit wanted
                  maximize = FALSE,     # set to TRUE for maximization
                  target   = Inf,       # set to Inf for no restriction
                  info     = FALSE)     # for printing interim information
    nmsCo <- match.arg(names(control), choices = names(cntrl), several.ok = TRUE)
    if (!is.null(names(control))) cntrl[nmsCo] <- control

    tol      <- cntrl$tol;      
    maxfeval <- cntrl$maxfeval
    maximize <- cntrl$maximize
    target   <- cntrl$target
    info     <- cntrl$info

	scale <- if (maximize) -1 else 1
    fun <- match.fun(fn)
    f <- function(x) scale * fun(x, ...)

    #-- Setting steps and stepsize -----
    nsteps <- floor(log2(1/tol))        # number of steps
    steps  <- 2^c(-(0:(nsteps-1)))      # decreasing step size
    dir <- diag(1, n, n)                # orthogonal directions

    x <- par                            # start point
    fx <- fbest <- f(x)                 # smallest value so far
    fcount <- 1                         # counts number of function calls

    if (info) cat("step\tnofc\tfmin\txpar\n")   # info header

    #-- Start the main loop ------------
    ns <- 0
    while (ns < nsteps && fcount < maxfeval && abs(fx) < target) {
        ns <- ns + 1
        hjs    <- .hjbsearch(x, f, lower, upper,
                            steps[ns], dir, fcount, maxfeval, target)
        x      <- hjs$x
        fx     <- hjs$fx
        sf     <- hjs$sf
        fcount <- fcount + hjs$finc

        if (info)
            cat(ns, "\t",  fcount, "\t", fx/scale, "\t", x[1], "...\n")
    }

    if (fcount > maxfeval) {
        warning("Function evaluation limit exceeded -- may not converge.")
        conv <- 1
    } else if (abs(fx) > target) {
        warning("Function exceeds min/max value -- may not converge.")
        conv <- 1
    } else {
        conv <- 0
    }

    fx <- fx / scale                    # undo scaling
    return(list(par = x, value = fx,
                convergence = conv, feval = fcount, niter = ns))
}

##  Search with a single scale -----------------------------
.hjbsearch <- function(xb, f, lo, up, h, dir, fcount, maxfeval, target) {
    x  <- xb
    xc <- x
    sf <- 0
    finc <- 0
    hje  <- .hjbexplore(xb, xc, f, lo, up, h, dir)
    x    <- hje$x
    fx   <- hje$fx
    sf   <- hje$sf
    finc <- finc + hje$numf

    # Pattern move
    while (sf == 1) {
        d  <- x-xb
        xb <- x
        xc <- x+d
        xc <- pmax(pmin(xc, up), lo)
        fb <- fx
        hje  <- .hjbexplore(xb, xc, f, lo, up, h, dir, fb)
        x    <- hje$x
        fx   <- hje$fx
        sf   <- hje$sf
        finc <- finc + hje$numf

        if (sf == 0) {  # pattern move failed
           hje  <- .hjbexplore(xb, xb, f, lo, up, h, dir, fb)
           x    <- hje$x
           fx   <- hje$fx
           sf   <- hje$sf
           finc <- finc + hje$numf
        }
        if (fcount + finc > maxfeval || abs(fx) > target) break
    }

    return(list(x = x, fx = fx, sf = sf, finc = finc))
}

##  Exploratory move ---------------------------------------
.hjbexplore <- function(xb, xc, f, lo, up, h, dir, fbold) {
    n <- length(xb)
    x <- xb

    if (missing(fbold)) {
        fb <- f(x)
        numf <- 1
    } else {
        fb <- fbold
        numf <- 0
    }

    fx <- fb
    xt <- xc
    sf <- 0                             # do we find a better point ?
    dirh <- h * dir
    fbold <- fx
    for (k in sample.int(n, n)) {       # resample orthogonal directions
        p1 <- xt + dirh[, k]
        if ( p1[k] <= up[k] ) {
            ft1 <- f(p1)
            numf <- numf + 1
        } else {
            ft1 <- fb
        }

        p2 <- xt - dirh[, k]
        if ( lo[k] <= p2[k] ) {
            ft2 <- f(p2)
            numf <- numf + 1
        } else {
            ft2 <- fb
        }

        if (min(ft1, ft2) < fb) {
            sf <- 1
            if (ft1 < ft2) {
                xt <- p1
                fb <- ft1
            } else {
                xt <- p2
                fb <- ft2
            }
        }
    }

    if (sf == 1) {
        x  <- xt
        fx <- fb
    }

    return(list(x = x, fx = fx, sf = sf, numf = numf))
}