1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
nmk <-
function(par, fn, control=list(), ...) {
ctrl <- list(tol=1.e-06, maxfeval = min(5000, max(1500, 20*length(par)^2)), regsimp=TRUE, maximize=FALSE, restarts.max=3, trace=FALSE)
namc <- match.arg(names(control), choices=names(ctrl), several.ok=TRUE)
if (!all(namc %in% names(ctrl)))
stop("unknown names in control: ", namc[!(namc %in% names(ctrl))])
if (!is.null(names(control))) ctrl[namc] <- control
ftol <- ctrl$tol
maxfeval <- ctrl$maxfeval
regsimp <- ctrl$regsimp
restarts.max <- ctrl$restarts.max
maximize <- ctrl$maximize
trace <- ctrl$trace
if (maximize) fnm <- function(par, ...) -fn(par, ...) else fnm <- function(par, ...) fn(par, ...)
x0 <- par
n <- length(par)
if (n == 1) stop(call. = FALSE, "Use `optimize' for univariate optimization")
if (n > 30) warning("Nelder-Mead should not be used for high-dimensional optimization")
V <- cbind(rep(0, n), diag(n))
f <- rep(0, n+1)
f[1] <- fnm(x0, ...)
V[, 1] <- x0
scale <- max(1, sqrt(sum(x0^2)))
if (regsimp) {
alpha <- scale / (n * sqrt(2)) * c(sqrt(n+1) + n - 1, sqrt(n+1) -1)
V[, -1] <- (x0 + alpha[2])
diag(V[, -1]) <- x0[1:n] + alpha[1]
for (j in 2:ncol(V)) f[j] <- fnm(V[,j], ...)
} else {
V[, -1] <- x0 + scale * V[, -1]
for (j in 2:ncol(V)) f[j] <- fnm(V[,j], ...)
}
f[is.nan(f)] <- Inf
nf <- n + 1
ord <- order(f)
f <- f[ord]
V <- V[, ord]
rho <- 1
gamma <- 0.5
chi <- 2
sigma <- 0.5
conv <- 1
oshrink <- 1
restarts <- 0
orth <- 0
dist <- f[n+1] - f[1]
v <- V[, -1] - V[, 1]
delf <- f[-1] - f[1]
diam <- sqrt(colSums(v^2))
# sgrad <- c(solve(t(v), delf))
sgrad <- c(crossprod(t(v), delf))
alpha <- 1.e-04 * max(diam) / sqrt(sum(sgrad^2))
simplex.size <- sum(abs(V[, -1] - V[, 1])) / max(1, sum(abs(V[, 1])))
itc <- 0
conv <- 0
message <- "Succesful convergence"
while (nf < maxfeval & restarts < restarts.max & dist > ftol & simplex.size > 1.e-06) {
fbc <- mean(f)
happy <- 0
itc <- itc + 1
xbar <- rowMeans(V[, 1:n])
xr <- (1 + rho) * xbar - rho * V[, n+1]
fr <- fnm(xr, ...)
nf <- nf + 1
if(is.nan(fr)) fr <- Inf
if (fr >= f[1] & fr < f[n]) {
happy <- 1
xnew <- xr
fnew <- fr
} else if (fr < f[1]) {
xe <- (1 + rho * chi) * xbar - rho * chi * V[, n+1]
fe <- fnm(xe, ...)
if(is.nan(fe)) fe <- Inf
nf <- nf + 1
if (fe < fr) {
xnew <- xe
fnew <- fe
happy <- 1
} else {
xnew <- xr
fnew <- fr
happy <- 1
}
} else if (fr >= f[n] & fr < f[n+1]) {
xc <- (1 + rho * gamma) * xbar - rho * gamma * V[, n+1]
fc <- fnm(xc, ...)
if(is.nan(fc)) fc <- Inf
nf <- nf + 1
if (fc <= fr) {
xnew <- xc
fnew <- fc
happy <- 1
}
} else if (fr >= f[n+1]) {
xc <- (1 - gamma) * xbar + gamma * V[, n+1]
fc <- fnm(xc, ...)
if(is.nan(fc)) fc <- Inf
nf <- nf + 1
if (fc < f[n+1]) {
xnew <- xc
fnew <- fc
happy <- 1
}
}
if (happy == 1 & oshrink == 1) {
fbt <- mean(c(f[1:n], fnew))
delfb <- fbt - fbc
armtst <- alpha * sum(sgrad^2)
if (delfb > - armtst/n) {
if (trace) cat("Trouble - restarting: \n")
restarts <- restarts + 1
orth <- 1
diams <- min(diam)
sx <- sign(0.5 * sign(sgrad))
happy <- 0
V[, -1] <- V[, 1]
diag(V[, -1]) <- diag(V[, -1]) - diams * sx[1:n]
}
}
if (happy == 1) {
V[, n+1] <- xnew
f[n+1] <- fnew
ord <- order(f)
V <- V[, ord]
f <- f[ord]
} else if (happy == 0 & restarts < restarts.max) {
if (orth == 0) orth <- 1
V[, -1] <- V[, 1] - sigma * (V [, -1] - V[, 1])
for (j in 2:ncol(V)) f[j] <- fnm(V[,j], ...) ## kmm change
nf <- nf + n
ord <- order(f)
V <- V[, ord]
f <- f[ord]
}
v <- V[, -1] - V[, 1]
delf <- f[-1] - f[1]
diam <- sqrt(colSums(v^2))
simplex.size <- sum(abs(v)) / max(1, sum(abs(V[, 1])))
f[is.nan(f)] <- Inf
dist <- f[n+1] - f[1]
# sgrad <- c(solve(t(v), delf))
sgrad <- c(crossprod(t(v), delf))
if (trace & !(itc %% 2)) cat("iter: ", itc, "\n", "value: ", f[1], "\n")
}
if (dist <= ftol | simplex.size <= 1.e-06) {
conv <- 0
message <- "Successful convergence"
} else if (nf >= maxfeval) {
conv <- 1
message <- "Maximum number of fevals exceeded"
} else if (restarts >= restarts.max) {
conv <- 2
message <- "Stagnation in Nelder-Mead"
}
return(list(par = V[, 1], value=f[1]*(-1)^maximize, feval=nf, restarts=restarts, convergence=conv, message=message))
}
|