File: nmk.R

package info (click to toggle)
r-cran-dfoptim 2023.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 140 kB
  • sloc: makefile: 2
file content (176 lines) | stat: -rw-r--r-- 4,603 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
nmk <-
function(par, fn, control=list(), ...) {
    ctrl <- list(tol=1.e-06, maxfeval = min(5000, max(1500, 20*length(par)^2)), regsimp=TRUE, maximize=FALSE, restarts.max=3, trace=FALSE)
	namc <- match.arg(names(control), choices=names(ctrl), several.ok=TRUE)
    if (!all(namc %in% names(ctrl))) 
        stop("unknown names in control: ", namc[!(namc %in% names(ctrl))])
    if (!is.null(names(control))) ctrl[namc] <- control
    ftol <- ctrl$tol
    maxfeval <- ctrl$maxfeval
    regsimp <- ctrl$regsimp
    restarts.max <- ctrl$restarts.max
    maximize <- ctrl$maximize
    trace <- ctrl$trace

	if (maximize) fnm <- function(par, ...) -fn(par, ...) else fnm <- function(par, ...) fn(par, ...) 

	x0 <- par
	n <- length(par)
	if (n == 1) stop(call. = FALSE, "Use `optimize' for univariate optimization")
 	if (n > 30) warning("Nelder-Mead should not be used for high-dimensional optimization")

	V <- cbind(rep(0, n), diag(n))
	f <- rep(0, n+1)
	f[1] <- fnm(x0, ...)
	V[, 1] <- x0
	scale <- max(1, sqrt(sum(x0^2)))

	if (regsimp) {
		alpha <- scale / (n * sqrt(2)) * c(sqrt(n+1) + n - 1, sqrt(n+1) -1)
		V[, -1] <- (x0 + alpha[2])
		diag(V[, -1]) <- x0[1:n] + alpha[1]
		for (j in 2:ncol(V)) f[j] <- fnm(V[,j], ...) 
	} else {
		V[, -1] <- x0 + scale * V[, -1] 
		for (j in 2:ncol(V)) f[j] <- fnm(V[,j], ...) 
	}

	f[is.nan(f)] <- Inf

	nf <- n + 1
	ord <- order(f)
	f <- f[ord]
	V <- V[, ord]
	
	rho <- 1
	gamma <- 0.5
	chi <- 2
	sigma <- 0.5
	conv <- 1
	oshrink <- 1
	restarts <- 0
	orth <- 0
	dist <- f[n+1] - f[1]
	
	v <- V[, -1] - V[, 1]
	delf <- f[-1] - f[1]
	diam <- sqrt(colSums(v^2))
#	sgrad <- c(solve(t(v), delf))
	sgrad <- c(crossprod(t(v), delf))
	alpha <- 1.e-04 * max(diam) / sqrt(sum(sgrad^2))
	simplex.size <- sum(abs(V[, -1] - V[, 1])) / max(1, sum(abs(V[, 1])))

	itc <- 0
	conv <- 0
	message <- "Succesful convergence"

	while (nf < maxfeval & restarts < restarts.max & dist > ftol & simplex.size > 1.e-06) {

		fbc <- mean(f)
		happy <- 0
		itc <- itc + 1
		xbar <- rowMeans(V[, 1:n])
		xr <- (1 + rho) * xbar - rho * V[, n+1]
		fr <- fnm(xr, ...)
		nf <- nf + 1
		if(is.nan(fr)) fr <- Inf

		if (fr >= f[1] & fr < f[n]) {
			happy <- 1
			xnew <- xr
			fnew <- fr
		} else if (fr < f[1]) {
			xe <- (1 + rho * chi) * xbar - rho * chi * V[, n+1]
			fe <- fnm(xe, ...)
		if(is.nan(fe)) fe <- Inf
			nf <- nf + 1
			if (fe < fr) {
				xnew <- xe
				fnew <- fe
				happy <- 1
			} else {
				xnew <- xr
				fnew <- fr
				happy <- 1
			}
		} else if (fr >= f[n] & fr < f[n+1]) {
			xc <- (1 + rho * gamma) * xbar - rho * gamma * V[, n+1]
			fc <- fnm(xc, ...)
		if(is.nan(fc)) fc <- Inf
			nf <- nf + 1
			if (fc <= fr) {
				xnew <- xc
				fnew <- fc
				happy <- 1
			}
		} else if (fr >= f[n+1]) {
			xc <- (1 - gamma) * xbar + gamma * V[, n+1]
			fc <- fnm(xc, ...)
		if(is.nan(fc)) fc <- Inf
			nf <- nf + 1
			if (fc < f[n+1]) {
				xnew <- xc
				fnew <- fc
				happy <- 1
			}
		}

		if (happy == 1 & oshrink == 1) {
			fbt <- mean(c(f[1:n], fnew))
			delfb <- fbt - fbc
			armtst <- alpha * sum(sgrad^2)
			if (delfb > - armtst/n) {
			if (trace) cat("Trouble - restarting: \n")
				restarts <- restarts + 1
				orth <- 1
				diams <- min(diam)
				sx <- sign(0.5 * sign(sgrad))
				happy <- 0
				V[, -1] <- V[, 1]
				diag(V[, -1]) <- diag(V[, -1]) - diams * sx[1:n]
			}
		}

		if (happy == 1) {
			V[, n+1] <- xnew
			f[n+1] <- fnew
			ord <- order(f)
			V <- V[, ord]
			f <- f[ord]
		} else if (happy == 0 & restarts < restarts.max) {
			if (orth == 0) orth <- 1
			V[, -1] <- V[, 1] - sigma * (V [, -1] - V[, 1])
			for (j in 2:ncol(V)) f[j] <- fnm(V[,j], ...)  ## kmm change
			nf <- nf + n
			ord <- order(f)
			V <- V[, ord]
			f <- f[ord]
		}

		v <- V[, -1] - V[, 1]
		delf <- f[-1] - f[1]
		diam <- sqrt(colSums(v^2))
		simplex.size <- sum(abs(v)) / max(1, sum(abs(V[, 1])))

		f[is.nan(f)] <- Inf

		dist <- f[n+1] - f[1]
#		sgrad <- c(solve(t(v), delf))
		sgrad <- c(crossprod(t(v), delf))
		if (trace & !(itc %% 2)) cat("iter: ", itc, "\n", "value: ", f[1], "\n")
	}

	if (dist <= ftol | simplex.size <= 1.e-06) {
		conv <- 0
		message <- "Successful convergence"
		} else if (nf >= maxfeval) {
		conv <- 1
		message <- "Maximum number of fevals exceeded"
		} else if (restarts >= restarts.max) {
		conv <- 2
		message <- "Stagnation in Nelder-Mead"
		}	

	return(list(par = V[, 1], value=f[1]*(-1)^maximize, feval=nf, restarts=restarts, convergence=conv, message=message))
}