1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
#' Traverse from one or more selected nodes onto adjacent, outward nodes
#'
#' @description
#'
#' From a graph object of class `dgr_graph` move along outward edges from one or
#' more nodes present in a selection to other connected nodes, replacing the
#' current nodes in the selection with those nodes traversed to. An optional
#' filter by node attribute can limit the set of nodes traversed to.
#'
#' This traversal function makes use of an active selection of nodes. After the
#' traversal, depending on the traversal conditions, there will either be a
#' selection of nodes or no selection at all.
#'
#' Selections of nodes can be performed using the following node selection
#' (`select_*()`) functions: [select_nodes()], [select_last_nodes_created()],
#' [select_nodes_by_degree()], [select_nodes_by_id()], or
#' [select_nodes_in_neighborhood()].
#'
#' Selections of nodes can also be performed using the following traversal
#' (`trav_*()`) functions: [trav_out()], [trav_in()], [trav_both()],
#' [trav_out_node()], [trav_in_node()], [trav_out_until()], or
#' [trav_in_until()].
#'
#' @inheritParams render_graph
#' @param conditions An option to use filtering conditions for the traversal.
#' @param copy_attrs_from Providing a node attribute name will copy those node
#' attribute values to the traversed nodes. Any values extant on the nodes
#' traversed to will be replaced.
#' @param copy_attrs_as If a node attribute name is provided in
#' `copy_attrs_from`, this option will allow the copied attribute values to be
#' written under a different attribute name. If the attribute name provided in
#' `copy_attrs_as` does not exist in the graph's ndf, the new node attribute
#' will be created with the chosen name.
#' @param agg If a node attribute is provided to `copy_attrs_from`, then an
#' aggregation function is required since there may be cases where multiple
#' edge attribute values will be passed onto the traversed node(s). To pass
#' only a single value, the following aggregation functions can be used:
#' `sum`, `min`, `max`, `mean`, or `median`.
#' @param add_to_selection An option to either add the traversed to nodes to the
#' active selection of nodes (`TRUE`) or switch the active selection entirely
#' to those traversed to nodes (`FALSE`, the default case).
#'
#' @return A graph object of class `dgr_graph`.
#'
#' @examples
#' # Set a seed
#' suppressWarnings(RNGversion("3.5.0"))
#' set.seed(23)
#'
#' # Create a simple graph
#' graph <-
#' create_graph() %>%
#' add_n_nodes(
#' n = 2,
#' type = "a",
#' label = c("asd", "iekd")) %>%
#' add_n_nodes(
#' n = 3,
#' type = "b",
#' label = c("idj", "edl", "ohd")) %>%
#' add_edges_w_string(
#' edges = "1->2 1->3 2->4 2->5 3->5",
#' rel = c(NA, "A", "B", "C", "D"))
#'
#' # Create a data frame with node ID values
#' # representing the graph edges (with `from`
#' # and `to` columns), and, a set of numeric values
#' df_edges <-
#' data.frame(
#' from = c(1, 1, 2, 2, 3),
#' to = c(2, 3, 4, 5, 5),
#' values = round(rnorm(5, 5), 2))
#'
#' # Create a data frame with node ID values
#' # representing the graph nodes (with the `id`
#' # columns), and, a set of numeric values
#' df_nodes <-
#' data.frame(
#' id = 1:5,
#' values = round(rnorm(5, 7), 2))
#'
#' # Join the data frame to the graph's internal
#' # edge data frame (edf)
#' graph <-
#' graph %>%
#' join_edge_attrs(df = df_edges) %>%
#' join_node_attrs(df = df_nodes)
#'
#' # Show the graph's internal node data frame
#' graph %>% get_node_df()
#'
#' # Show the graph's internal edge data frame
#' graph %>% get_edge_df()
#'
#' # Perform a simple traversal from node `3`
#' # to outward adjacent nodes with no conditions
#' # on the nodes traversed to
#' graph %>%
#' select_nodes_by_id(nodes = 3) %>%
#' trav_out() %>%
#' get_selection()
#'
#' # Traverse from node `1` to outbound
#' # nodes, filtering to those nodes that have
#' # numeric values greater than `7.0` for
#' # the `values` node attribute
#' graph %>%
#' select_nodes_by_id(nodes = 1) %>%
#' trav_out(
#' conditions = values > 7.0) %>%
#' get_selection()
#'
#' # Traverse from node `1` to any outbound
#' # nodes, filtering to those nodes that
#' # have a `type` attribute of `b`
#' graph %>%
#' select_nodes_by_id(nodes = 1) %>%
#' trav_out(
#' conditions = type == "b") %>%
#' get_selection()
#'
#' # Traverse from node `2` to any outbound
#' # nodes, filtering to those nodes that
#' # have a degree of `1`
#' graph %>%
#' {
#' node_degrees <-
#' get_node_info(.) %>%
#' dplyr::select(id, deg)
#' join_node_attrs(
#' graph = .,
#' df = node_degrees)
#' } %>%
#' select_nodes_by_id(nodes = 2) %>%
#' trav_out(
#' conditions = deg == 1) %>%
#' get_selection()
#'
#' # Traverse from node `2` to any outbound
#' # nodes, and use multiple conditions for
#' # the traversal
#' graph %>%
#' select_nodes_by_id(nodes = 2) %>%
#' trav_out(
#' conditions =
#' type == "a" &
#' values > 8.0) %>%
#' get_selection()
#'
#' # Traverse from node `2` to any
#' # outbound nodes, and use multiple
#' # conditions with a single-length vector
#' graph %>%
#' select_nodes_by_id(nodes = 2) %>%
#' trav_out(
#' conditions =
#' type == "b" |
#' values > 8.0) %>%
#' get_selection()
#'
#' # Traverse from node `2` to any outbound
#' # nodes, and use a regular expression as
#' # a filtering condition
#' graph %>%
#' select_nodes_by_id(nodes = 2) %>%
#' trav_out(
#' conditions = grepl("..d", label)) %>%
#' get_selection()
#'
#' # Create another simple graph to demonstrate
#' # copying of node attribute values to traversed
#' # nodes
#' graph <-
#' create_graph() %>%
#' add_node() %>%
#' select_nodes() %>%
#' add_n_nodes_ws(
#' n = 2,
#' direction = "to") %>%
#' clear_selection() %>%
#' select_nodes_by_id(nodes = 2:3) %>%
#' set_node_attrs_ws(
#' node_attr = value,
#' value = 5)
#'
#' # Show the graph's internal node data frame
#' graph %>% get_node_df()
#'
#' # Show the graph's internal edge data frame
#' graph %>% get_edge_df()
#'
#' # Perform a traversal from the outer nodes
#' # (`2` and `3`) to the central node (`1`) while
#' # also applying the node attribute `value` to
#' # node `1` (summing the `value` of 5 from
#' # both nodes before applying that value to the
#' # target node)
#' graph <-
#' graph %>%
#' trav_out(
#' copy_attrs_from = value,
#' agg = "sum")
#'
#' # Show the graph's internal node data
#' # frame after this change
#' graph %>% get_node_df()
#'
#' @export
trav_out <- function(
graph,
conditions = NULL,
copy_attrs_from = NULL,
copy_attrs_as = NULL,
agg = "sum",
add_to_selection = FALSE
) {
# Get the time of function start
time_function_start <- Sys.time()
# Validation: Graph object is valid
check_graph_valid(graph)
# Validation: Graph contains nodes
check_graph_contains_nodes(graph)
# Validation: Graph contains edges
check_graph_contains_edges(graph)
# Validation: Graph object has valid node selection
check_graph_contains_node_selection(
graph,
c("Any traversal requires an active selection.",
"This type of traversal requires a selection of nodes."))
# Get the requested `copy_attrs_from`
copy_attrs_from <-
rlang::enquo(copy_attrs_from) %>% rlang::get_expr() %>% as.character()
# Get the requested `copy_attrs_as`
copy_attrs_as <-
rlang::enquo(copy_attrs_as) %>% rlang::get_expr() %>% as.character()
if (length(copy_attrs_from) == 0) {
copy_attrs_from <- NULL
}
if (length(copy_attrs_as) == 0) {
copy_attrs_as <- NULL
}
if (!is.null(copy_attrs_as) && !is.null(copy_attrs_from)) {
if (copy_attrs_as == copy_attrs_from) {
copy_attrs_as <- NULL
}
}
# Get the selection of nodes as the starting
# nodes for the traversal
starting_nodes <- graph$node_selection$node
# Get the graph's edge data frame
edf <- graph$edges_df
# Get the graph's node data frame
ndf <- graph$nodes_df
# Find all nodes that are connected to the
# starting nodes via outgoing edges
valid_nodes <-
edf %>%
dplyr::filter(to != from) %>%
dplyr::filter(from %in% starting_nodes) %>%
dplyr::distinct(to)
valid_nodes <-
dplyr::as_tibble(valid_nodes) %>%
dplyr::rename(id = "to") %>%
dplyr::inner_join(ndf, by = "id")
# If no rows returned, then there are no
# valid traversals, so return the same graph
# object without modifying the selection
if (nrow(valid_nodes) == 0) {
return(graph)
}
# If traversal conditions are provided then
# pass in those conditions and filter the
# data frame of `valid_nodes`
if (!rlang::quo_is_null(rlang::enquo(conditions))) {
valid_nodes <- dplyr::filter(.data = valid_nodes, {{ conditions }})
}
# If the option is taken to copy node attribute
# values to the traversed nodes, perform the join
# operations
if (!is.null(copy_attrs_from)) {
nodes <-
valid_nodes %>%
dplyr::select(id) %>%
dplyr::inner_join(edf %>% dplyr::select("from", "to"), by = c("id" = "to")) %>%
dplyr::inner_join(ndf %>% dplyr::select("id", !!enquo(copy_attrs_from)), by = c("from" = "id")) %>%
dplyr::select("id", !!enquo(copy_attrs_from))
# If the values to be copied are numeric,
# perform aggregation on the values
if (nodes[, 2] %>% unlist() %>% is.numeric()) {
nodes <-
nodes %>%
dplyr::group_by(id) %>%
dplyr::summarize(!!copy_attrs_from :=
match.fun(!!agg)(!!as.name(copy_attrs_from),
na.rm = TRUE),
.groups = "drop")
}
nodes <-
nodes %>%
dplyr::right_join(ndf, by = "id") %>%
dplyr::relocate(id, type, label) %>%
as.data.frame(stringsAsFactors = FALSE)
# Get column numbers that end with ".x" or ".y"
split_var_x_col <-
grep("\\.x$", colnames(nodes))
split_var_y_col <-
grep("\\.y$", colnames(nodes))
if (is.null(copy_attrs_as)) {
# Selectively merge in values to the existing
# edge attribute column
for (i in seq_len(nrow(nodes))) {
if (!is.na(nodes[i, split_var_x_col])) {
nodes[i, split_var_y_col] <- nodes[i, split_var_x_col]
}
}
}
if (!is.null(copy_attrs_as)) {
# Reorder the columns generated
nodes <-
nodes[, c(seq_len(ncol(nodes) - 2), split_var_y_col, split_var_x_col)]
}
# Rename the ".y" column
colnames(nodes)[split_var_y_col] <- copy_attrs_from
if (is.null(copy_attrs_as)) {
# Drop the ".x" column
nodes <- nodes[-split_var_x_col]
} else {
# Rename the two columns
colnames(nodes)[split_var_x_col] <- copy_attrs_from
colnames(nodes)[split_var_y_col] <- copy_attrs_as
}
# Update the graph's internal node data frame
graph$nodes_df <- nodes
}
# If no rows returned, then there are no
# valid traversals, so return the same graph
# object without modifying the selection
if (nrow(valid_nodes) == 0) {
return(graph)
}
# Obtain vector with node ID selection of nodes
# already present
nodes_prev_selection <- graph$node_selection$node
if (add_to_selection) {
# If TRUE supplied to `add_to_selection` add
# the nodes to which we traversed to the
# previous selection
nodes_combined <- union(nodes_prev_selection, valid_nodes$id)
graph$node_selection <-
replace_graph_node_selection(
graph = graph,
replacement = nodes_combined)
} else {
# Add the node ID values to the active selection
# of nodes in `graph$node_selection`
graph$node_selection <-
replace_graph_node_selection(
graph = graph,
replacement = valid_nodes$id)
}
# Replace `graph$edge_selection` with an empty df
graph$edge_selection <- create_empty_esdf()
# Get the name of the function
fcn_name <- get_calling_fcn()
# Update the `graph_log` df with an action
graph$graph_log <-
add_action_to_log(
graph_log = graph$graph_log,
version_id = nrow(graph$graph_log) + 1L,
function_used = fcn_name,
time_modified = time_function_start,
duration = graph_function_duration(time_function_start),
nodes = nrow(graph$nodes_df),
edges = nrow(graph$edges_df))
# Write graph backup if the option is set
if (graph$graph_info$write_backups) {
save_graph_as_rds(graph = graph)
}
graph
}
|