1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
#' Traverse from one or more selected edges onto adjacent, outward nodes
#'
#' @description
#'
#' From a graph object of class `dgr_graph` with an active selection of edges
#' move opposite to the edge direction to connected nodes, replacing the current
#' edge selection with those nodes traversed to. An optional filter by node
#' attribute can limit the set of nodes traversed to.
#'
#' This traversal function makes use of an active selection of edges. After the
#' traversal, depending on the traversal conditions, there will either be a
#' selection of nodes or no selection at all.
#'
#' Selections of edges can be performed using the following selection
#' (`select_*()`) functions: [select_edges()], [select_last_edges_created()],
#' [select_edges_by_edge_id()], or [select_edges_by_node_id()].
#'
#' Selections of edges can also be performed using the following traversal
#' (`trav_*()`) functions: [trav_out_edge()], [trav_in_edge()],
#' [trav_both_edge()], or [trav_reverse_edge()].
#'
#' @inheritParams render_graph
#' @param conditions An option to use filtering conditions for the traversal.
#' @param copy_attrs_from Providing an edge attribute name will copy those edge
#' attribute values to the traversed nodes. If the edge attribute already
#' exists, the values will be merged to the traversed nodes; otherwise, a new
#' node attribute will be created.
#' @param copy_attrs_as If an edge attribute name is provided in
#' `copy_attrs_from`, this option will allow the copied attribute values to be
#' written under a different node attribute name. If the attribute name
#' provided in `copy_attrs_as` does not exist in the graph's ndf, the new node
#' attribute will be created with the chosen name.
#' @param agg If an edge attribute is provided to `copy_attrs_from`, then an
#' aggregation function is required since there may be cases where multiple
#' edge attribute values will be passed onto the traversed node(s). To pass
#' only a single value, the following aggregation functions can be used:
#' `sum`, `min`, `max`, `mean`, or `median`.
#'
#' @return A graph object of class `dgr_graph`.
#'
#' @examples
#' # Set a seed
#' suppressWarnings(RNGversion("3.5.0"))
#' set.seed(23)
#'
#' # Create a simple graph
#' graph <-
#' create_graph() %>%
#' add_n_nodes(
#' n = 2,
#' type = "a",
#' label = c("asd", "iekd")) %>%
#' add_n_nodes(
#' n = 3,
#' type = "b",
#' label = c("idj", "edl", "ohd")) %>%
#' add_edges_w_string(
#' edges = "1->2 1->3 2->4 2->5 3->5",
#' rel = c(NA, "A", "B", "C", "D"))
#'
#' # Create a data frame with node ID values
#' # representing the graph edges (with `from`
#' # and `to` columns), and, a set of numeric values
#' df_edges <-
#' data.frame(
#' from = c(1, 1, 2, 2, 3),
#' to = c(2, 3, 4, 5, 5),
#' values = round(rnorm(5, 5), 2))
#'
#' # Create a data frame with node ID values
#' # representing the graph nodes (with the `id`
#' # columns), and, a set of numeric values
#' df_nodes <-
#' data.frame(
#' id = 1:5,
#' values = round(rnorm(5, 7), 2))
#'
#' # Join the data frame to the graph's internal
#' # edge data frame (edf)
#' graph <-
#' graph %>%
#' join_edge_attrs(df = df_edges) %>%
#' join_node_attrs(df = df_nodes)
#'
#' # Show the graph's internal node data frame
#' graph %>% get_node_df()
#'
#' # Show the graph's internal edge data frame
#' graph %>% get_edge_df()
#'
#' # Perform a simple traversal from the
#' # edge `1`->`3` to the attached node
#' # in the direction of the edge; here, no
#' # conditions are placed on the nodes
#' # traversed to
#' graph %>%
#' select_edges(
#' from = 1,
#' to = 3) %>%
#' trav_out_node() %>%
#' get_selection()
#'
#' # Traverse from edges `2`->`5` and
#' # `3`->`5` to the attached node along
#' # the direction of the edge; here, the
#' # traversals lead to different nodes
#' graph %>%
#' select_edges(
#' from = 2,
#' to = 5) %>%
#' select_edges(
#' from = 3,
#' to = 5) %>%
#' trav_out_node() %>%
#' get_selection()
#'
#' # Traverse from the edge `1`->`3`
#' # to the attached node where the edge
#' # is outgoing, this time filtering
#' # numeric values greater than `7.0` for
#' # the `values` node attribute
#' graph %>%
#' select_edges(
#' from = 1,
#' to = 3) %>%
#' trav_out_node(
#' conditions = values > 7.0) %>%
#' get_selection()
#'
#' # Traverse from the edge `1`->`3`
#' # to the attached node where the edge
#' # is outgoing, this time filtering
#' # numeric values less than `7.0` for
#' # the `values` node attribute (the
#' # condition is not met so the original
#' # selection of edge `1`->`3` remains)
#' graph %>%
#' select_edges(
#' from = 1,
#' to = 3) %>%
#' trav_out_node(
#' conditions = values < 7.0) %>%
#' get_selection()
#'
#' # Traverse from the edge `1`->`2`
#' # to node `2`, using multiple conditions
#' graph %>%
#' select_edges(
#' from = 1,
#' to = 2) %>%
#' trav_out_node(
#' conditions =
#' grepl(".*d$", label) |
#' values < 6.0) %>%
#' get_selection()
#'
#' # Create another simple graph to demonstrate
#' # copying of edge attribute values to traversed
#' # nodes
#' graph <-
#' create_graph() %>%
#' add_node() %>%
#' select_nodes() %>%
#' add_n_nodes_ws(
#' n = 2,
#' direction = "from") %>%
#' clear_selection() %>%
#' select_nodes_by_id(nodes = 2) %>%
#' set_node_attrs_ws(
#' node_attr = value,
#' value = 8) %>%
#' clear_selection() %>%
#' select_edges_by_edge_id(edges = 1) %>%
#' set_edge_attrs_ws(
#' edge_attr = value,
#' value = 5) %>%
#' clear_selection() %>%
#' select_edges_by_edge_id(edges = 2) %>%
#' set_edge_attrs_ws(
#' edge_attr = value,
#' value = 5) %>%
#' clear_selection() %>%
#' select_edges()
#'
#' # Show the graph's internal edge data frame
#' graph %>% get_edge_df()
#'
#' # Show the graph's internal node data frame
#' graph %>% get_node_df()
#'
#' # Perform a traversal from the edges to
#' # the central node (`1`) while also applying
#' # the edge attribute `value` to the node (in
#' # this case summing the `value` of 5 from
#' # both edges before adding as a node attribute)
#' graph <-
#' graph %>%
#' trav_out_node(
#' copy_attrs_from = value,
#' agg = "sum")
#'
#' # Show the graph's internal node data frame
#' # after this change
#' graph %>% get_node_df()
#'
#' @export
trav_out_node <- function(
graph,
conditions = NULL,
copy_attrs_from = NULL,
copy_attrs_as = NULL,
agg = "sum"
) {
# Get the time of function start
time_function_start <- Sys.time()
# Validation: Graph object is valid
check_graph_valid(graph)
# Validation: Graph contains nodes
check_graph_contains_nodes(graph)
# Validation: Graph contains edges
check_graph_contains_edges(graph)
# Validation: Graph object has valid edge selection
check_graph_contains_edge_selection(
graph,
extra_msg = c("Any traversal requires an active selection.",
"This type of traversal requires a selection of edges."))
# Get the requested `copy_attrs_from`
copy_attrs_from <-
rlang::enquo(copy_attrs_from) %>% rlang::get_expr() %>% as.character()
# Get the requested `copy_attrs_as`
copy_attrs_as <-
rlang::enquo(copy_attrs_as) %>% rlang::get_expr() %>% as.character()
if (length(copy_attrs_from) == 0) {
copy_attrs_from <- NULL
}
if (length(copy_attrs_as) == 0) {
copy_attrs_as <- NULL
}
if (!is.null(copy_attrs_as) && !is.null(copy_attrs_from)) {
if (copy_attrs_as == copy_attrs_from) {
copy_attrs_as <- NULL
}
}
# Get the selection of edges
starting_edges <- graph$edge_selection
# Get the graph's node data frame
ndf <- graph$nodes_df
# Get the graph's edge data frame
edf <- graph$edges_df
# Find all nodes that are connected to the
# starting edges
valid_nodes <-
starting_edges %>%
dplyr::distinct(from) %>%
dplyr::left_join(ndf, by = c("from" = "id"))
# If traversal conditions are provided then
# pass in those conditions and filter the
# data frame of `valid_nodes`
if (!rlang::quo_is_null(rlang::enquo(conditions))) {
valid_nodes <- dplyr::filter(.data = valid_nodes, {{ conditions }})
}
# If no rows returned, then there are no
# valid traversals, so return the same graph
# object without modifying the selection
if (nrow(valid_nodes) == 0) {
return(graph)
}
# If the option is taken to copy edge attribute
# values to the traversed nodes, perform the join
# operation
if (!is.null(copy_attrs_from)) {
nodes <-
starting_edges %>%
dplyr::semi_join(valid_nodes, by = "from") %>%
dplyr::left_join(edf, by = c("edge" = "id")) %>%
dplyr::select("from.y", !!enquo(copy_attrs_from))
if (!is.null(copy_attrs_as)) {
if (copy_attrs_as %in% c("id", "from", "to")) {
cli::cli_abort(
"Copied attributes should not overwrite either of the `id`, `from`, or `to` edge attributes.")
}
colnames(nodes)[2] <- copy_attrs_from <- copy_attrs_as
}
nodes <-
nodes %>%
dplyr::rename(id = "from.y") %>%
dplyr::group_by(id) %>%
dplyr::summarize(!!copy_attrs_from :=
match.fun(!!agg)(!!as.name(copy_attrs_from),
na.rm = TRUE)) %>%
dplyr::right_join(ndf, by = "id") %>%
dplyr::relocate("id", "type", "label") %>%
as.data.frame(stringsAsFactors = FALSE)
# If edge attribute exists as a column in the ndf
if (copy_attrs_from %in% colnames(ndf)) {
# Get column numbers that end with ".x" or ".y"
split_var_x_col <-
grep("\\.x$", colnames(nodes))
split_var_y_col <-
grep("\\.y$", colnames(nodes))
# Selectively merge in values to the existing
# edge attribute column
for (i in seq_len(nrow(nodes))) {
if (!is.na(nodes[i, split_var_x_col])) {
nodes[i, split_var_y_col] <- nodes[i, split_var_x_col]
}
}
# Rename the ".y" column
colnames(nodes)[split_var_y_col] <- copy_attrs_from
# Drop the ".x" column
nodes <- nodes[-split_var_x_col]
# Reorder columns
nodes <-
nodes %>%
dplyr::relocate("id", "type", "label")
}
# Update the graph's internal node data frame
graph$nodes_df <- nodes
}
# Add the node ID values to the active selection
# of nodes in `graph$node_selection`
graph$node_selection <-
replace_graph_node_selection(
graph = graph,
replacement = valid_nodes$from)
# Replace `graph$edge_selection` with an empty df
graph$edge_selection <- create_empty_esdf()
# Get the name of the function
fcn_name <- get_calling_fcn()
# Update the `graph_log` df with an action
graph$graph_log <-
add_action_to_log(
graph_log = graph$graph_log,
version_id = nrow(graph$graph_log) + 1L,
function_used = fcn_name,
time_modified = time_function_start,
duration = graph_function_duration(time_function_start),
nodes = nrow(graph$nodes_df),
edges = nrow(graph$edges_df))
# Write graph backup if the option is set
if (graph$graph_info$write_backups) {
save_graph_as_rds(graph = graph)
}
graph
}
|