File: discrepancyCriteria.R

package info (click to toggle)
r-cran-dicedesign 1.10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 516 kB
  • sloc: ansic: 237; makefile: 2
file content (169 lines) | stat: -rw-r--r-- 4,230 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
discrepancyCriteria <- function(design, type='all'){
	#---------------------------------------
	# source code by Jessica FRANCO (2006.10.05)
  # modified by Bertrand Iooss (2013.26.12)
	#---------------------------------------
	# inputs
	# - design of experiments
	# - type of dicrepancies to be computed
	
	X <- as.matrix(design)
	dimension 	<- dim(X)[2]	# dimension 
	n 			<- dim(X)[1]	# number of points
	
	if ( n < dimension ){
	   stop('Warning : the number of points is lower than the dimension.')
	}
	# To check the experimental region
	if ( min(X)<0 || max(X)>1 ){
		warning("The design is rescaling into the unit cube [0,1]^d.")
		M <- apply(X,2,max)
		m <- apply(X,2,min)
		for (j in 1:dim(X)[2]){
			X[,j] <- (X[,j]-m[j])/(M[j]-m[j])
		}	
	}

	R <- list()
	DisC2 <- FALSE
	DisL2 <- FALSE
	DisL2star <- FALSE
	DisM2 <- FALSE
	DisS2 <- FALSE
	DisW2 <- FALSE
	DisMix2 <- FALSE
	
	if (length(type)==1 && type=='all'){
		type <- c('C2','L2','L2star','M2','S2','W2','Mix2')	
	}
	for(i in 1:length(type)){
		type_ <- type[i]
	  	switch(type_,
        		C2 = {DisC2 <- TRUE},
	  	      L2 = {DisL2 <- TRUE},
	  	      L2star = {DisL2star <- TRUE},
        		M2 = {DisM2 <- TRUE},
        		S2 = {DisS2 <- TRUE},
        		W2 = {DisW2 <- TRUE},
        		Mix2 = {DisMix2 <- TRUE})
	}

	# centered L2-discrepancy
	#------------------------
	if(DisC2 == TRUE){
		s1 <- 0; s2 <- 0
		for (i in 1:n){
			p  <- prod((1+0.5*abs(X[i,]-0.5)-0.5*((abs(X[i,]-0.5))^2)))
			s1 <- s1+p
  			for (k in 1:n){
				q  <- prod((1+0.5*abs(X[i,]-0.5)+0.5*abs(X[k,]-0.5)-0.5*abs(X[i,]-X[k,])))
      			s2 <- s2+q
  			}
		}
		R <- c(R,DisC2 = sqrt(((13/12)^dimension)-((2/n)*s1) + ((1/n^2)*s2)))
	}
	# L2-discrepancy
	#------------------------
	if(DisL2 == TRUE){
	  s1 <- 0; s2 <- 0
	  for (i in 1:n){
	    p  <- prod(X[i,]*(1-X[i,]))
	    s1 <- s1+p
	    for (k in 1:n){
	      q <- 1
	      for (j in 1:dimension){
	        q <- q*(1-max(X[i,j],X[k,j]))*min(X[i,j],X[k,j])
	      }
	      s2 <- s2+q
	    }
	  }
	  R <- c(R,DisL2 = sqrt(12^(-dimension) - (((2^(1-dimension))/n)*s1) + ((1/n^2)*s2)))
	}
	
	# L2star-discrepancy
	#------------------------
	if(DisL2star == TRUE){
	  dL2<-0
	  for (j in 1:n){
      for (i in 1:n){
	    if(i!=j){
        t<-c()
	      for (l in 1:dimension) t<-c(t,1-max(X[i,l],X[j,l]))
	      t<-(prod(t))/(n^2)
	    }
	    else{
        t1<-1-X[i,]
        t1<-prod(t1)
        t2<-1-X[i,]^2
        t2<-prod(t2)
        t<-t1/(n^2)-((2^(1-dimension))/n)*t2
	    }
      dL2<-dL2+t}
	  }  
	  R <- c(R,DisL2star = sqrt(3^(-dimension)+dL2))
	}
	
	# modified L2-discrepancy
	#------------------------
	if(DisM2 == TRUE){
		s1 <- 0; s2 <- 0
		for (i in 1:n){
   			p  <- 1
			p  <- prod((3-(X[i,]*X[i,])))
			s1 <- s1+p
			for (k in 1:n){
				q <- 1
     				for (j in 1:dimension){
					q <- q*(2-max(X[i,j],X[k,j]))
     				}
	 			s2 <- s2+q
  			}
		}
		R <- c(R,DisM2 = sqrt(((4/3)^dimension) - (((2^(1-dimension))/n)*s1) + ((1/n^2)*s2)))
	}

	# symmetric L2-discrepancy
	#------------------------
	if(DisS2 == TRUE){
		s1 <- 0; s2 <- 0
		for (i in 1:n){
			p <- prod((1+(2*X[i,])-(2*X[i,]*X[i,])))
			s1 <- s1+p
			for (k in 1:n){
      			q <- prod((1-abs(X[i,]-X[k,])))
     				s2 <- s2+q
  			}
		}
		R <- c(R,DisS2 = sqrt(((4/3)^dimension) - ((2/n)*s1) + ((2^dimension/n^2)*s2)))
	}
	
	# wrap-around L2-discrepancy
	#------------------------
	if(DisW2 == TRUE){
		s1 <- 0
		for (i in 1:n){
			for (k in 1:n){
      			p  <- prod((1.5-((abs(X[i,]-X[k,]))*(1-abs(X[i,]-X[k,])))))
     				s1 <- s1+p
  			}
		}
		R <- c(R , DisW2 = sqrt((-((4/3)^dimension) + ((1/n^2)*s1))))
	}
	
	# mixture L2-discrepancy
	#------------------------
	if(DisMix2 == TRUE){
	  s1 <- 0; s2 <- 0
	  for (i in 1:n){
	    p  <- prod((5/3-0.25*abs(X[i,]-0.5)-0.25*((abs(X[i,]-0.5))^2)))
	    s1 <- s1+p
	    for (k in 1:n){
	      q  <- prod((15/8-0.25*abs(X[i,]-0.5)-0.25*abs(X[k,]-0.5)-0.75*abs(X[i,]-X[k,])+0.5*((abs(X[i,]-X[k,]))^2)))
	      s2 <- s2+q
	    }
	  }
	  R <- c(R,DisMix2 = sqrt(((19/12)^dimension)-((2/n)*s1) + ((1/n^2)*s2)))
	}
	
	return(R)
}