File: guides.R

package info (click to toggle)
r-cran-diffobj 0.3.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,432 kB
  • sloc: ansic: 455; javascript: 96; sh: 32; makefile: 8
file content (491 lines) | stat: -rwxr-xr-x 17,470 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# Copyright (C) 2021 Brodie Gaslam
#
# This file is part of "diffobj - Diffs for R Objects"
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# Go to <https://www.r-project.org/Licenses/GPL-2> for a copy of the license.

# Split by guides; used by nested structures to retrieve contents within
# guides.  Each element has an attribute indicating the indices from the
# text element it was drawn from
#
# @param drop.leading keeps the section preceding guides; originally this was
#   always dropped, but caused problems with lists of depth > 1

split_by_guides <- function(txt, guides, drop.leading=TRUE) {
  stopifnot(
    is.character(txt), !anyNA(txt), is.integer(guides),
    all(guides %in% seq_along(txt))
  )
  empty <- list(`attr<-`(txt, "idx", seq_along(txt)))

  if(!length(guides)) {
    empty
  } else {
    guide.l <- logical(length(txt))
    guide.l[guides] <- TRUE
    sections <- cumsum(c(if(guides[1L] == 1L) 1L else 0L, diff(guide.l) == 1L))
    ids <- seq_along(txt)

    # remove actual guidelines

    ids.net <- ids[-guides]
    sec.net <- sections[-guides]
    txt.net <- txt[-guides]

    # split and drop leading stuff if it exists (those with section == 0)

    dat <- unname(split(txt.net, sec.net))
    ind <- unname(split(ids.net, sec.net))

    if(drop.leading) {
      dat <- tail(dat, max(sec.net))
      ind <- tail(ind, max(sec.net))
    }
    # Generate indices and attach them to each element of list

    Map(`attr<-`, dat, "idx", ind )
  }
}
# Detect which rows are likely to be meta data rows (e.g. headers) in tabular
# data (data.frames, timeseries with freq > 1).
#
# note due to ts use, can't use rownames, colnames, etc.
#
# Also, right now we're overloading a bunch of different formats (data.table,
# data.frame, etc.  Probably would be better to separate the regexes into
# different functions and keep the wrapping logic in here).

detect_2d_guides <- function(txt) {
  stopifnot(is.character(txt))
  # Start by looking for first row that leads spaces, this should be the
  # beginning of the actual data, typically the column headers. This ways we can
  # skip the meta data in tibbles and the like

  res <- integer(0L)
  if(any(crayon::has_style(txt))) txt <- crayon::strip_style(txt)
  first.spaces <- grep("^\\s+\\S+", txt)

  if(length(first.spaces)) {
    # Now look for data; space.rows are rows that start with spaces, and thus
    # likely contain the column headers.

    first.space <- min(first.spaces)
    space.rows <-
      !grepl("^\\S+|^\\s+[0-9]+|^\\s+---\\s*$", txt) &
      seq_along(txt) >= first.space

    if(!any(space.rows) || all(space.rows)) {
      if(length(space.rows)) res <- 1L
    } else {
      head.row <- min(which(space.rows))
      first.row <- min(which(!space.rows & seq_along(space.rows) > head.row))
      last.row <- max(which(!space.rows))

      # Between first.row and last.row, look for repeating sequences of head rows
      # and non head rows; should have the same number of each for each block in
      # a wrapped 2d object

      if(last.row > head.row) {
        space.bw <- space.rows[head.row:last.row]
        seq.dat <- vapply(
          split(space.bw, cumsum(c(TRUE, diff(space.bw) == 1L))),
          FUN=function(x) c(sum(x), sum(!x)),
          integer(2L)
        )
        # Which of the sets of true and false head rows have the same repeating
        # sequence as the first?  One thing to think about is what happens when
        # print gets truncated; should allow last in sequence to have fewer rows,
        # but we don't do that yet...

        valid.grps <- colSums(seq.dat - seq.dat[,1L] == 0L) == 2L
        if(any(valid.grps)) {
          # Figure out which rows the headers correspond to by cumsuming the
          # header and non-header rows, and then adding the initial offset.
          res <- array(cumsum(seq.dat), dim=dim(seq.dat))[1L, valid.grps] +
            head.row - 1L
          # If there is more than one row for each header, expand out the header
          if(seq.dat[1L, 1L] > 1L)
            # sequence only gained `from` param in R4.x, so this is our
            # "backport"
            res <- base::unname(
              sequence(seq.dat[1L,]) + rep(res - seq.dat[1L,], seq.dat[1L,])
            )
        }
  } } }
  res
}
# Definitely approximate matching, we are lazy in matching the `$` versions
# due to the possibility of pathological names (e.g., containing `)

detect_list_guides <- function(txt) {
  stopifnot(is.character(txt))
  res <- integer(0L)
  if(length(txt)) {
    # match stuff like "[[1]][[2]]" or "$ab[[1]]$cd" ...
    square.brkt <- "(\\[\\[\\d+\\]\\])"
    dollar.simple <- sprintf("(\\$%s)", .reg.r.ident)
    pat <- sprintf("^(%s|%s)*(\\$`.*`.*)?$", square.brkt, dollar.simple)

    # Only keep those that are first, preceded by an empty string, or by
    # another matching pattern
    has.pat <- grepl(pat, txt) & nzchar(txt)
    has.chars <- c(FALSE, head(nzchar(txt), -1L))
    has.pat.prev <- c(FALSE, head(has.pat, -1L))
    valid.pat <- has.pat & (!has.chars | has.pat.prev)

    # For any sequence of matching patterns, only keep the last one since
    # the other ones are redundant
    if(any(valid.pat)) {
      v.p.rle <- rle(valid.pat)
      valid.pat[-with(v.p.rle, cumsum(lengths)[values])] <- FALSE
    }
    res <- which(valid.pat)
  }
  res
}
# Matrices

detect_matrix_guides <- function(txt, dim.n) {
  stopifnot(
    is.character(txt), !anyNA(txt),
    is.null(dim.n) || (is.list(dim.n) && length(dim.n) == 2L)
  )
  n.d.n <- names(dim.n)
  row.n <- n.d.n[1L]
  col.n <- n.d.n[2L]
  # try to guard against dimnames that contain regex
  # identify which lines could be row and col headers

  n.p <- "(\\[|\\]|\\(|\\)|\\{|\\}|\\*|\\+|\\?|\\.|\\^|\\$|\\\\|\\|)"
  c.h <- if(!is.null(col.n) && nzchar(col.n)) {
    col.pat <- sprintf("^\\s{2,}%s$", gsub(n.p, "\\\1", col.n))
    grepl(col.pat, txt)
  } else {
    rep(FALSE, length(txt))
  }
  r.h <- if(!is.null(row.n) && nzchar(row.n)) {
    # a bit lazy, should include col headers as well
    row.pat <- sprintf("^%s\\s+\\S+", gsub(n.p, "\\\1", row.n))
    grepl(row.pat, txt)
  } else {
    pat.extra <- if(!is.null(dim.n[[2L]]) && is.character(dim.n[[2L]])) {
      paste0(c("", gsub(n.p, "\\\1", dim.n[[2L]])), collapse="|")
    }
    grepl(paste0("^\\s+(\\[,[1-9]+[0-9]*\\]", pat.extra, ")(\\s|$)"), txt)
  }
  # Classify each line depending on what pattern it matches so we can then
  # analyze sequences and determine which are valid

  row.types <- integer(length(txt))
  row.types[r.h] <- 1L                   # row meta / col headers
  row.types[c.h] <- 2L                   # col meta

  mx.starts <- integer(0L)
  if(is.null(n.d.n)) {
    mx.start.num <- 1L
    mx.starts <- which(row.types == mx.start.num)
  } else {
    mx.start.num <- 2L
    tmp <- which(row.types == mx.start.num)
    if(sum(r.h) == sum(c.h) && identical(which(c.h) + 1L, which(r.h))) {
      mx.starts <- tmp
    }
  }
  mx.start <- head(mx.starts, 1L)

  res <- integer(0L)
  if(length(mx.start)) {
    # Now  try to see if pattern repeats to identify the full list of wrapped
    # guides, and return the indices that are part of repeating pattern

    mx.end <- head(mx.starts[which(mx.starts > mx.start)], 1L) - 1L
    if(!length(mx.end)) mx.end <- length(txt)

    pat.inds <- mx.start:(mx.end)
    template <- rep(
      row.types[pat.inds],
      floor((length(txt) - mx.start + 1L) / length(pat.inds))
    )
    res <- which(head(row.types, length(template)) == template & !!template) +
      mx.start - 1L
  }
  res
}
# Here we want to get the high dimension counter as well as the column headers
# of each sub-dimension

detect_array_guides <- function(txt, dim.n) {
  n.d.n <- names(dim.n)
  stopifnot(
    is.character(txt),
    is.list(dim.n) || is.null(dim.n),
    (is.character(n.d.n) && length(n.d.n) > 2L) || is.null(n.d.n)
  )
  # Detect patterns for higher dimensions, and then use the matrix guide
  # finding functions to get additional guides

  dim.guides <- which(grepl("^, ,", txt))
  blanks <- which(txt == "")

  res <- integer(0L)
  if(
    length(dim.guides) && length(blanks) &&
    all(dim.guides + 1L %in% blanks) &&
    (length(dim.guides) == 1L || length(unique(diff(dim.guides)) == 1L))
  ) {
    # Make sure within each array section there is a matrix representation

    dim.guide.fin <- sort(c(dim.guides, dim.guides + 1L))
    sub.dat <- split_by_guides(txt, dim.guide.fin)
    heads <- lapply(sub.dat, detect_matrix_guides, head(dim.n, 2L))

    if(
      all(vapply(heads, identical, logical(1L), heads[[1L]])) &&
      all(vapply(heads, length, integer(1L)))
    )
      res <- dim.guide.fin
  }
  res
}
# Utility fun to determin whether an object would be shown with the default show
# method

is_default_show_obj <- function(obj) {
  stopifnot(isS4(obj))
  s.m <- selectMethod("show", class(obj))
  identical(
    class(s.m),
    structure("derivedDefaultMethod", package = "methods")
  )
}
# Basic S4 guide detection, does not handle nesting or anything fancy like that
# and could easily be fooled

detect_s4_guides <- function(txt, obj) {
  stopifnot(isS4(obj))

  # Only try to do this if relying on default S4 show method

  if(is_default_show_obj(obj)) {
    # this could be an issue if they start using curly quotes or whatever...
    guides <- c(
      sprintf("An object of class \"%s\"", class(obj)),
      sprintf("Slot \"%s\":", slotNames(obj))
    )
    guides.loc <- which(txt %in% guides)
    guides.txt <- txt[guides.loc]

    if(!identical(guides, guides.txt)) {
      integer()   # nocov really no way to test this, and harmless
    } else {
      guides.loc
    }
  } else integer()
}
#' Generic Methods to Implement Flexible Guide Line Computations
#'
#' Guides are context lines that would normally be omitted from the
#' diff because they are too far from any differences, but provide particularly
#' useful contextual information.  Column headers are a common example.
#' Modifying guide finding is an advanced feature intended for package
#' developers that want special treatment for the display output of their
#' objects.
#'
#' \code{Diff} detects these important context lines by looking for patterns in
#' the text of the diff, and then displays these lines in addition to the
#' normal diff output.  Guides are marked by a tilde in the gutter, and
#' are typically styled differently than normal context lines, by default in
#' grey.  Guides may be far from the diff hunk they are juxtaposed to.  We
#' eschew the device of putting the guides in the hunk header as \code{git diff}
#' does because often the column alignment of the guide line is meaningful.
#'
#' Guides are detected by the \code{guides*} methods documented here.
#' Each of the \code{diff*} methods (e.g. \code{\link{diffPrint}}) has a
#' corresponding \code{guides*} method (e.g.
#' \code{\link{guidesPrint}}), with the exception of \code{\link{diffCsv}}
#' since that method uses \code{diffPrint} internally.  The \code{guides*}
#' methods expect an R object as the first parameter and the captured display
#' representation of the object in a character vector as the second.  The
#' function should then identify which elements in the character representation
#' should be treated as guides, and should return the numeric indices for them.
#'
#' The original object is passed as the first argument so that the generic can
#' dispatch on it, and so the methods may adjust their guide finding behavior
#' to data that is easily retrievable from the object, but less so from the
#' character representation thereof.
#'
#' The default method for \code{guidesPrint} has special handling for 2D
#' objects (e.g. data frames, matrices), arrays, time series, tables, lists, and
#' S4 objects that use the default \code{show} method.  Guide finding is on a
#' best efforts basis and may fail if your objects contain \dQuote{pathological}
#' display representations.  Since the diff will still work with failed
#' \code{guides} finding we consider this an acceptable compromise.  Guide
#' finding is more likely to fail with nested recursive structures.  A known
#' issue is that list-like S3 objects without print methods [reset the tag
#' buffers](https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17610) so the
#' guides become less useful for them.
#'
#' \code{guidesStr} highlights top level objects.  The default methods for the
#' other \code{guide*} generics do not do anything and exist only as a mechanism
#' for providing custom guide line methods.
#'
#' If you dislike the default handling you can also define your own methods for
#' matrices, arrays, etc., or alternatively you can pass a guide finding
#' function directly via the \code{guides} parameter to the \code{diff*}
#' methods.
#'
#' If you have classed objects with special patterns you can define your own
#' methods for them (see examples), though if your objects are S3 you will need
#' to use \code{\link{setOldClass}} as the \code{guides*} generics are S4.
#'
#' @note The mechanism for identifying guides will almost certainly change in
#'   the future to allow for better handling of nested guides, so if you do
#'   implement custom guideline methods do so with the understanding that they
#'   will likely be deprecated in one of the future releases.
#'
#' @aliases guidesPrint, guidesStr, guidesChr, guidesDeparse
#' @rdname guides
#' @name guides
#' @param obj an R object
#' @param obj.as.chr the character representation of \code{obj} that is used
#'   for computing the diffs
#' @return integer containing values in \code{seq_along(obj.as.chr)}
#' @examples
#' ## Roundabout way of suppressing guides for matrices
#' setMethod("guidesPrint", c("matrix", "character"),
#'   function(obj, obj.as.chr) integer(0L)
#' )
#' ## Special guides for "zulu" S3 objects that match lines
#' ## starting in "zulu###" where ### is a nuber
#' setOldClass("zulu")
#' setMethod("guidesPrint", c("zulu", "character"),
#'   function(obj, obj.as.chr) {
#'     if(length(obj) > 20) grep("^zulu[0-9]*", obj.as.chr)
#'     else integer(0L)
#' } )

NULL

#' @export
#' @rdname guides

setGeneric(
  "guidesPrint",
  function(obj, obj.as.chr) standardGeneric("guidesPrint")
)
#' @rdname guides

setMethod(
  "guidesPrint", c("ANY", "character"),
  function(obj, obj.as.chr) {
    if(anyNA(obj.as.chr))
      stop("Cannot compute guides if `obj.as.chr` contains NAs")
    if(is.matrix(obj)) {
      detect_matrix_guides(obj.as.chr, dimnames(obj))
    } else if(
      length(dim(obj)) == 2L ||
      (is.ts(obj) && frequency(obj) > 1)
    ) {
      detect_2d_guides(obj.as.chr)
    } else if (is.array(obj)) {
      detect_array_guides(obj.as.chr, dimnames(obj))
    } else if (is.list(obj)) {
      detect_list_guides(obj.as.chr)
    } else if (isS4(obj)) {
      detect_s4_guides(obj.as.chr, obj)
    } else integer(0L)
  }
)
#' @export
#' @rdname guides

setGeneric(
  "guidesStr",
  function(obj, obj.as.chr) standardGeneric("guidesStr")
)
#' @rdname guides

setMethod("guidesStr", c("ANY", "character"),
  function(obj, obj.as.chr) {
    if(anyNA(obj.as.chr))
      stop("Cannot compute guides if `obj.as.chr` contains NAs")
    starts.w.dollar <- grepl("^ \\$", obj.as.chr)
    which(starts.w.dollar & !c(tail(starts.w.dollar, -1L), FALSE))
} )

#' @export
#' @rdname guides

setGeneric(
  "guidesChr",
  function(obj, obj.as.chr) standardGeneric("guidesChr")
)
#' @rdname guides

setMethod("guidesChr", c("ANY", "character"),
  function(obj, obj.as.chr) integer(0L)
)
#' @export
#' @rdname guides

setGeneric(
  "guidesDeparse",
  function(obj, obj.as.chr) standardGeneric("guidesDeparse")
)
#' @rdname guides

setMethod("guidesDeparse", c("ANY", "character"),
  function(obj, obj.as.chr) integer(0L)
)
#' @export
#' @rdname guides

setGeneric(
  "guidesFile",
  function(obj, obj.as.chr) standardGeneric("guidesFile")
)
#' @rdname guides

setMethod("guidesFile", c("ANY", "character"),
  function(obj, obj.as.chr) integer(0L)
)
# Helper function to verify guide line computation worked out

apply_guides <- function(obj, obj.as.chr, guide_fun) {
  guide <- try(guide_fun(obj, obj.as.chr))
  msg.extra <- paste0(
    "If you did not specify a `guides` function or define custom `guides*` ",
    "methods contact maintainer (see `?guides`).  Proceeding without guides."
  )
  if(inherits(guide, "try-error")) {
    warning(
      "`guides*` method produced an error when attempting to compute guide ",
      "lines ; ", msg.extra
    )
    guide <- integer()
  }
  if(
    !is.integer(guide) || anyNA(guide) || anyDuplicated(guide) ||
    !all(guide %in% seq_along(obj.as.chr))
  )
    stop(
      "`guides*` method must produce an integer vector containing unique ",
      "index values for the `obj.as.chr` vector; ", msg.extra
    )
  guide
}
make_guides <- function(target, tar.capt, current, cur.capt, guide_fun) {
  tar.guides <- apply_guides(target, tar.capt, guide_fun)
  cur.guides <- apply_guides(current, cur.capt, guide_fun)
  GuideLines(target=tar.guides, current=cur.guides)
}