1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
# Copyright (C) 2021 Brodie Gaslam
#
# This file is part of "diffobj - Diffs for R Objects"
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# Go to <https://www.r-project.org/Licenses/GPL-2> for a copy of the license.
# Split by guides; used by nested structures to retrieve contents within
# guides. Each element has an attribute indicating the indices from the
# text element it was drawn from
#
# @param drop.leading keeps the section preceding guides; originally this was
# always dropped, but caused problems with lists of depth > 1
split_by_guides <- function(txt, guides, drop.leading=TRUE) {
stopifnot(
is.character(txt), !anyNA(txt), is.integer(guides),
all(guides %in% seq_along(txt))
)
empty <- list(`attr<-`(txt, "idx", seq_along(txt)))
if(!length(guides)) {
empty
} else {
guide.l <- logical(length(txt))
guide.l[guides] <- TRUE
sections <- cumsum(c(if(guides[1L] == 1L) 1L else 0L, diff(guide.l) == 1L))
ids <- seq_along(txt)
# remove actual guidelines
ids.net <- ids[-guides]
sec.net <- sections[-guides]
txt.net <- txt[-guides]
# split and drop leading stuff if it exists (those with section == 0)
dat <- unname(split(txt.net, sec.net))
ind <- unname(split(ids.net, sec.net))
if(drop.leading) {
dat <- tail(dat, max(sec.net))
ind <- tail(ind, max(sec.net))
}
# Generate indices and attach them to each element of list
Map(`attr<-`, dat, "idx", ind )
}
}
# Detect which rows are likely to be meta data rows (e.g. headers) in tabular
# data (data.frames, timeseries with freq > 1).
#
# note due to ts use, can't use rownames, colnames, etc.
#
# Also, right now we're overloading a bunch of different formats (data.table,
# data.frame, etc. Probably would be better to separate the regexes into
# different functions and keep the wrapping logic in here).
detect_2d_guides <- function(txt) {
stopifnot(is.character(txt))
# Start by looking for first row that leads spaces, this should be the
# beginning of the actual data, typically the column headers. This ways we can
# skip the meta data in tibbles and the like
res <- integer(0L)
if(any(crayon::has_style(txt))) txt <- crayon::strip_style(txt)
first.spaces <- grep("^\\s+\\S+", txt)
if(length(first.spaces)) {
# Now look for data; space.rows are rows that start with spaces, and thus
# likely contain the column headers.
first.space <- min(first.spaces)
space.rows <-
!grepl("^\\S+|^\\s+[0-9]+|^\\s+---\\s*$", txt) &
seq_along(txt) >= first.space
if(!any(space.rows) || all(space.rows)) {
if(length(space.rows)) res <- 1L
} else {
head.row <- min(which(space.rows))
first.row <- min(which(!space.rows & seq_along(space.rows) > head.row))
last.row <- max(which(!space.rows))
# Between first.row and last.row, look for repeating sequences of head rows
# and non head rows; should have the same number of each for each block in
# a wrapped 2d object
if(last.row > head.row) {
space.bw <- space.rows[head.row:last.row]
seq.dat <- vapply(
split(space.bw, cumsum(c(TRUE, diff(space.bw) == 1L))),
FUN=function(x) c(sum(x), sum(!x)),
integer(2L)
)
# Which of the sets of true and false head rows have the same repeating
# sequence as the first? One thing to think about is what happens when
# print gets truncated; should allow last in sequence to have fewer rows,
# but we don't do that yet...
valid.grps <- colSums(seq.dat - seq.dat[,1L] == 0L) == 2L
if(any(valid.grps)) {
# Figure out which rows the headers correspond to by cumsuming the
# header and non-header rows, and then adding the initial offset.
res <- array(cumsum(seq.dat), dim=dim(seq.dat))[1L, valid.grps] +
head.row - 1L
# If there is more than one row for each header, expand out the header
if(seq.dat[1L, 1L] > 1L)
# sequence only gained `from` param in R4.x, so this is our
# "backport"
res <- base::unname(
sequence(seq.dat[1L,]) + rep(res - seq.dat[1L,], seq.dat[1L,])
)
}
} } }
res
}
# Definitely approximate matching, we are lazy in matching the `$` versions
# due to the possibility of pathological names (e.g., containing `)
detect_list_guides <- function(txt) {
stopifnot(is.character(txt))
res <- integer(0L)
if(length(txt)) {
# match stuff like "[[1]][[2]]" or "$ab[[1]]$cd" ...
square.brkt <- "(\\[\\[\\d+\\]\\])"
dollar.simple <- sprintf("(\\$%s)", .reg.r.ident)
pat <- sprintf("^(%s|%s)*(\\$`.*`.*)?$", square.brkt, dollar.simple)
# Only keep those that are first, preceded by an empty string, or by
# another matching pattern
has.pat <- grepl(pat, txt) & nzchar(txt)
has.chars <- c(FALSE, head(nzchar(txt), -1L))
has.pat.prev <- c(FALSE, head(has.pat, -1L))
valid.pat <- has.pat & (!has.chars | has.pat.prev)
# For any sequence of matching patterns, only keep the last one since
# the other ones are redundant
if(any(valid.pat)) {
v.p.rle <- rle(valid.pat)
valid.pat[-with(v.p.rle, cumsum(lengths)[values])] <- FALSE
}
res <- which(valid.pat)
}
res
}
# Matrices
detect_matrix_guides <- function(txt, dim.n) {
stopifnot(
is.character(txt), !anyNA(txt),
is.null(dim.n) || (is.list(dim.n) && length(dim.n) == 2L)
)
n.d.n <- names(dim.n)
row.n <- n.d.n[1L]
col.n <- n.d.n[2L]
# try to guard against dimnames that contain regex
# identify which lines could be row and col headers
n.p <- "(\\[|\\]|\\(|\\)|\\{|\\}|\\*|\\+|\\?|\\.|\\^|\\$|\\\\|\\|)"
c.h <- if(!is.null(col.n) && nzchar(col.n)) {
col.pat <- sprintf("^\\s{2,}%s$", gsub(n.p, "\\\1", col.n))
grepl(col.pat, txt)
} else {
rep(FALSE, length(txt))
}
r.h <- if(!is.null(row.n) && nzchar(row.n)) {
# a bit lazy, should include col headers as well
row.pat <- sprintf("^%s\\s+\\S+", gsub(n.p, "\\\1", row.n))
grepl(row.pat, txt)
} else {
pat.extra <- if(!is.null(dim.n[[2L]]) && is.character(dim.n[[2L]])) {
paste0(c("", gsub(n.p, "\\\1", dim.n[[2L]])), collapse="|")
}
grepl(paste0("^\\s+(\\[,[1-9]+[0-9]*\\]", pat.extra, ")(\\s|$)"), txt)
}
# Classify each line depending on what pattern it matches so we can then
# analyze sequences and determine which are valid
row.types <- integer(length(txt))
row.types[r.h] <- 1L # row meta / col headers
row.types[c.h] <- 2L # col meta
mx.starts <- integer(0L)
if(is.null(n.d.n)) {
mx.start.num <- 1L
mx.starts <- which(row.types == mx.start.num)
} else {
mx.start.num <- 2L
tmp <- which(row.types == mx.start.num)
if(sum(r.h) == sum(c.h) && identical(which(c.h) + 1L, which(r.h))) {
mx.starts <- tmp
}
}
mx.start <- head(mx.starts, 1L)
res <- integer(0L)
if(length(mx.start)) {
# Now try to see if pattern repeats to identify the full list of wrapped
# guides, and return the indices that are part of repeating pattern
mx.end <- head(mx.starts[which(mx.starts > mx.start)], 1L) - 1L
if(!length(mx.end)) mx.end <- length(txt)
pat.inds <- mx.start:(mx.end)
template <- rep(
row.types[pat.inds],
floor((length(txt) - mx.start + 1L) / length(pat.inds))
)
res <- which(head(row.types, length(template)) == template & !!template) +
mx.start - 1L
}
res
}
# Here we want to get the high dimension counter as well as the column headers
# of each sub-dimension
detect_array_guides <- function(txt, dim.n) {
n.d.n <- names(dim.n)
stopifnot(
is.character(txt),
is.list(dim.n) || is.null(dim.n),
(is.character(n.d.n) && length(n.d.n) > 2L) || is.null(n.d.n)
)
# Detect patterns for higher dimensions, and then use the matrix guide
# finding functions to get additional guides
dim.guides <- which(grepl("^, ,", txt))
blanks <- which(txt == "")
res <- integer(0L)
if(
length(dim.guides) && length(blanks) &&
all(dim.guides + 1L %in% blanks) &&
(length(dim.guides) == 1L || length(unique(diff(dim.guides)) == 1L))
) {
# Make sure within each array section there is a matrix representation
dim.guide.fin <- sort(c(dim.guides, dim.guides + 1L))
sub.dat <- split_by_guides(txt, dim.guide.fin)
heads <- lapply(sub.dat, detect_matrix_guides, head(dim.n, 2L))
if(
all(vapply(heads, identical, logical(1L), heads[[1L]])) &&
all(vapply(heads, length, integer(1L)))
)
res <- dim.guide.fin
}
res
}
# Utility fun to determin whether an object would be shown with the default show
# method
is_default_show_obj <- function(obj) {
stopifnot(isS4(obj))
s.m <- selectMethod("show", class(obj))
identical(
class(s.m),
structure("derivedDefaultMethod", package = "methods")
)
}
# Basic S4 guide detection, does not handle nesting or anything fancy like that
# and could easily be fooled
detect_s4_guides <- function(txt, obj) {
stopifnot(isS4(obj))
# Only try to do this if relying on default S4 show method
if(is_default_show_obj(obj)) {
# this could be an issue if they start using curly quotes or whatever...
guides <- c(
sprintf("An object of class \"%s\"", class(obj)),
sprintf("Slot \"%s\":", slotNames(obj))
)
guides.loc <- which(txt %in% guides)
guides.txt <- txt[guides.loc]
if(!identical(guides, guides.txt)) {
integer() # nocov really no way to test this, and harmless
} else {
guides.loc
}
} else integer()
}
#' Generic Methods to Implement Flexible Guide Line Computations
#'
#' Guides are context lines that would normally be omitted from the
#' diff because they are too far from any differences, but provide particularly
#' useful contextual information. Column headers are a common example.
#' Modifying guide finding is an advanced feature intended for package
#' developers that want special treatment for the display output of their
#' objects.
#'
#' \code{Diff} detects these important context lines by looking for patterns in
#' the text of the diff, and then displays these lines in addition to the
#' normal diff output. Guides are marked by a tilde in the gutter, and
#' are typically styled differently than normal context lines, by default in
#' grey. Guides may be far from the diff hunk they are juxtaposed to. We
#' eschew the device of putting the guides in the hunk header as \code{git diff}
#' does because often the column alignment of the guide line is meaningful.
#'
#' Guides are detected by the \code{guides*} methods documented here.
#' Each of the \code{diff*} methods (e.g. \code{\link{diffPrint}}) has a
#' corresponding \code{guides*} method (e.g.
#' \code{\link{guidesPrint}}), with the exception of \code{\link{diffCsv}}
#' since that method uses \code{diffPrint} internally. The \code{guides*}
#' methods expect an R object as the first parameter and the captured display
#' representation of the object in a character vector as the second. The
#' function should then identify which elements in the character representation
#' should be treated as guides, and should return the numeric indices for them.
#'
#' The original object is passed as the first argument so that the generic can
#' dispatch on it, and so the methods may adjust their guide finding behavior
#' to data that is easily retrievable from the object, but less so from the
#' character representation thereof.
#'
#' The default method for \code{guidesPrint} has special handling for 2D
#' objects (e.g. data frames, matrices), arrays, time series, tables, lists, and
#' S4 objects that use the default \code{show} method. Guide finding is on a
#' best efforts basis and may fail if your objects contain \dQuote{pathological}
#' display representations. Since the diff will still work with failed
#' \code{guides} finding we consider this an acceptable compromise. Guide
#' finding is more likely to fail with nested recursive structures. A known
#' issue is that list-like S3 objects without print methods [reset the tag
#' buffers](https://bugs.r-project.org/bugzilla/show_bug.cgi?id=17610) so the
#' guides become less useful for them.
#'
#' \code{guidesStr} highlights top level objects. The default methods for the
#' other \code{guide*} generics do not do anything and exist only as a mechanism
#' for providing custom guide line methods.
#'
#' If you dislike the default handling you can also define your own methods for
#' matrices, arrays, etc., or alternatively you can pass a guide finding
#' function directly via the \code{guides} parameter to the \code{diff*}
#' methods.
#'
#' If you have classed objects with special patterns you can define your own
#' methods for them (see examples), though if your objects are S3 you will need
#' to use \code{\link{setOldClass}} as the \code{guides*} generics are S4.
#'
#' @note The mechanism for identifying guides will almost certainly change in
#' the future to allow for better handling of nested guides, so if you do
#' implement custom guideline methods do so with the understanding that they
#' will likely be deprecated in one of the future releases.
#'
#' @aliases guidesPrint, guidesStr, guidesChr, guidesDeparse
#' @rdname guides
#' @name guides
#' @param obj an R object
#' @param obj.as.chr the character representation of \code{obj} that is used
#' for computing the diffs
#' @return integer containing values in \code{seq_along(obj.as.chr)}
#' @examples
#' ## Roundabout way of suppressing guides for matrices
#' setMethod("guidesPrint", c("matrix", "character"),
#' function(obj, obj.as.chr) integer(0L)
#' )
#' ## Special guides for "zulu" S3 objects that match lines
#' ## starting in "zulu###" where ### is a nuber
#' setOldClass("zulu")
#' setMethod("guidesPrint", c("zulu", "character"),
#' function(obj, obj.as.chr) {
#' if(length(obj) > 20) grep("^zulu[0-9]*", obj.as.chr)
#' else integer(0L)
#' } )
NULL
#' @export
#' @rdname guides
setGeneric(
"guidesPrint",
function(obj, obj.as.chr) standardGeneric("guidesPrint")
)
#' @rdname guides
setMethod(
"guidesPrint", c("ANY", "character"),
function(obj, obj.as.chr) {
if(anyNA(obj.as.chr))
stop("Cannot compute guides if `obj.as.chr` contains NAs")
if(is.matrix(obj)) {
detect_matrix_guides(obj.as.chr, dimnames(obj))
} else if(
length(dim(obj)) == 2L ||
(is.ts(obj) && frequency(obj) > 1)
) {
detect_2d_guides(obj.as.chr)
} else if (is.array(obj)) {
detect_array_guides(obj.as.chr, dimnames(obj))
} else if (is.list(obj)) {
detect_list_guides(obj.as.chr)
} else if (isS4(obj)) {
detect_s4_guides(obj.as.chr, obj)
} else integer(0L)
}
)
#' @export
#' @rdname guides
setGeneric(
"guidesStr",
function(obj, obj.as.chr) standardGeneric("guidesStr")
)
#' @rdname guides
setMethod("guidesStr", c("ANY", "character"),
function(obj, obj.as.chr) {
if(anyNA(obj.as.chr))
stop("Cannot compute guides if `obj.as.chr` contains NAs")
starts.w.dollar <- grepl("^ \\$", obj.as.chr)
which(starts.w.dollar & !c(tail(starts.w.dollar, -1L), FALSE))
} )
#' @export
#' @rdname guides
setGeneric(
"guidesChr",
function(obj, obj.as.chr) standardGeneric("guidesChr")
)
#' @rdname guides
setMethod("guidesChr", c("ANY", "character"),
function(obj, obj.as.chr) integer(0L)
)
#' @export
#' @rdname guides
setGeneric(
"guidesDeparse",
function(obj, obj.as.chr) standardGeneric("guidesDeparse")
)
#' @rdname guides
setMethod("guidesDeparse", c("ANY", "character"),
function(obj, obj.as.chr) integer(0L)
)
#' @export
#' @rdname guides
setGeneric(
"guidesFile",
function(obj, obj.as.chr) standardGeneric("guidesFile")
)
#' @rdname guides
setMethod("guidesFile", c("ANY", "character"),
function(obj, obj.as.chr) integer(0L)
)
# Helper function to verify guide line computation worked out
apply_guides <- function(obj, obj.as.chr, guide_fun) {
guide <- try(guide_fun(obj, obj.as.chr))
msg.extra <- paste0(
"If you did not specify a `guides` function or define custom `guides*` ",
"methods contact maintainer (see `?guides`). Proceeding without guides."
)
if(inherits(guide, "try-error")) {
warning(
"`guides*` method produced an error when attempting to compute guide ",
"lines ; ", msg.extra
)
guide <- integer()
}
if(
!is.integer(guide) || anyNA(guide) || anyDuplicated(guide) ||
!all(guide %in% seq_along(obj.as.chr))
)
stop(
"`guides*` method must produce an integer vector containing unique ",
"index values for the `obj.as.chr` vector; ", msg.extra
)
guide
}
make_guides <- function(target, tar.capt, current, cur.capt, guide_fun) {
tar.guides <- apply_guides(target, tar.capt, guide_fun)
cur.guides <- apply_guides(current, cur.capt, guide_fun)
GuideLines(target=tar.guides, current=cur.guides)
}
|