1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
# Copyright (C) 2021 Brodie Gaslam
#
# This file is part of "diffobj - Diffs for R Objects"
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# Go to <https://www.r-project.org/Licenses/GPL-2> for a copy of the license.
# Convert ses data into raw hunks that include both match hunks as well as
# actual hunks
#
# These hunks are then processed into hunk groups in a separate step
# (see `group_hunks`).
#
# @return a list of atomic hunks, each containing integer vectors A and B where
# positive numbers reference character lines from target and negative ones
# from current. For "context" and "sidebyside" mode the A vector will contain
# the lines from target, and the B vector the lines from current. For
# "unified" only the A vector is populated. In addition to the A and B
# vectors some other meta data is tracked, such as the range of the hunks is
# also stored as tar.rng and cur.rng; mostly inferrable from the actual data
# in the hunks, except that in unified mode we no longer have the actual
# context strings from the `current` vector.
#
# starting to have second thoughts about removing all the non index data from
# hunks, particularly because it makes the line length calc a pita.
setGeneric("as.hunks", function(x, etc, ...) standardGeneric("as.hunks"))
setMethod("as.hunks", c("MyersMbaSes", "Settings"),
function(
x, etc, ...
) {
# Split our data into sections that have either deletes/inserts or matches
dat <- as.matrix(x)
sects <- unique(dat[, "section"])
j <- 0L
res.l <- if(!nrow(dat)) {
# Minimum one empty hunk if nothing; make this a context hunk to indicate
# that there are no differences. This used to be a non-context hunk
list(
list(
id=1L, A=integer(0L), B=integer(0L),
context=TRUE, guide=FALSE, tar.rng=integer(2L), cur.rng=integer(2L),
tar.rng.sub=integer(2L), cur.rng.sub=integer(2L),
tar.rng.trim=integer(2L), cur.rng.trim=integer(2L),
completely.empty=TRUE
)
)
} else {
lapply(
seq_along(sects),
function(i) {
s <- sects[i]
d <- dat[which(dat[, "section"] == s), , drop=FALSE]
d.del <- d[which(.edit.map[d[, "type"]] == "Delete"), ,drop=FALSE]
d.ins <- d[which(.edit.map[d[, "type"]] == "Insert"), ,drop=FALSE]
d.mtc <- d[which(.edit.map[d[, "type"]] == "Match"), ,drop=FALSE]
# R 3.3.3 had sum(integer(0)) == 1!
del.len <- if(nrow(d.del)) sum(d.del[, "len"]) else 0L
ins.len <- if(nrow(d.ins)) sum(d.ins[, "len"]) else 0L
mtc.len <- if(nrow(d.mtc)) sum(d.mtc[, "len"]) else 0L
tar.len <- del.len + mtc.len
cur.len <- ins.len + mtc.len
# atomic hunks may only be del/ins or match, not both
if((del.len || ins.len) && mtc.len || !(del.len + ins.len + mtc.len))
stop("Logic Error: unknown edit types; contact maintainer.") # nocov
# Figure out where previous hunk left off
del.last <- if(nrow(d.del)) d.del[1L, "last.a"] else d[1L, "last.a"]
ins.last <- if(nrow(d.ins)) d.ins[1L, "last.b"] else d[1L, "last.b"]
A.start <- unname(del.last)
B.start <- unname(ins.last)
# record `cur` indices as negatives
tar <- seq_len(tar.len) + A.start
cur <- -(seq_len(cur.len) + B.start)
context <- !!mtc.len
A <- switch(
etc@mode, context=tar,
unified=c(tar, if(!context) cur), sidebyside=tar,
stop("Logic Error: unknown mode; contact maintainer.")
)
B <- switch(
etc@mode, context=cur, unified=integer(), sidebyside=cur,
stop("Logic Error: unknown mode; contact maintainer.")
)
# compute ranges
tar.rng <- cur.rng <- integer(2L)
if(tar.len) tar.rng <- c(A.start + 1L, A.start + tar.len)
if(cur.len) cur.rng <- c(B.start + 1L, B.start + cur.len)
list(
id=i, A=A, B=B, context=context, guide=FALSE,
tar.rng=tar.rng, cur.rng=cur.rng,
tar.rng.sub=tar.rng, cur.rng.sub=cur.rng,
tar.rng.trim=tar.rng, cur.rng.trim=cur.rng,
completely.empty=FALSE
)
} ) }
res.l
} )
# Group hunks together based on context, in "auto" mode we find the context
# that maximizes lines displayed while adhering to line and hunk limits
# Definitely not very efficient since we re-run code multiple times we
# probably don't need to.
#
# Important: context atomic hunks are duplicated anytime there is enough
# context that we only show part of the context hunk.
#
# @return a list containing lists of atomic hunks. Each of these sub-lists
# of atomic hunks is treated as a "hunk", but is really a combination of
# context and hunks which we will refer to as "hunk group". In each hunk
# group, There may be as little as one hunk with no context, or many hunks and
# context if the context between hunks is not sufficient to meet the requested
# context, in which case the hunks bleed together forming these hunk groups.
group_hunks <- function(hunks, etc, tar.capt, cur.capt) {
context <- etc@context
line.limit <- etc@line.limit
ctx.val <- if(is(context, "AutoContext")) {
len <- diff_line_len(
p_and_t_hunks(hunks, ctx.val=context@max, etc=etc),
etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
)
len.min <- diff_line_len(
p_and_t_hunks(hunks, ctx.val=context@min, etc=etc),
etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
)
if(line.limit[[1L]] < 0L) {
context@max
} else if(len.min > line.limit[[1L]]) {
context@min
} else {
ctx.max <- ctx.hi <- ctx <- context@max
ctx.lo <- context@min
safety <- 0L
repeat {
if((safety <- safety + 1L) > ctx.max)
# nocov start
stop(
"Logic Error: stuck trying to find auto-context; contact ",
"maintainer."
)
# nocov end
if(len > line.limit[[1L]] && ctx - ctx.lo > 1L) {
ctx.hi <- ctx
ctx <- as.integer((ctx - ctx.lo) / 2)
} else if (len < line.limit[[1L]] && ctx.hi - ctx > 1L) {
ctx.lo <- ctx
ctx <- ctx + as.integer(ceiling(ctx.hi - ctx) / 2)
} else if (len > line.limit[[1L]]) {
# unable to get something small enough, but we know min context
# works from inital test
ctx <- context@min
break
} else if (len <= line.limit[[1L]]) {
break
}
len <- diff_line_len(
p_and_t_hunks(hunks, ctx.val=ctx, etc=etc),
etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
)
}
ctx
}
} else context
res <- process_hunks(hunks, ctx.val=ctx.val, etc=etc)
res
}
# process the hunks and also drop off groups that exceed limit
#
# used exclusively when we are trying to auto-calculate context
p_and_t_hunks <- function(hunks.raw, ctx.val, etc) {
c.all <- process_hunks(hunks.raw, ctx.val, etc)
hunk.limit <- etc@hunk.limit
if(hunk.limit[[1L]] >= 0L && length(c.all) > hunk.limit[[1L]])
c.all <- c.all[seq_along(hunk.limit[[2L]])]
c.all
}
# Subset hunks; should only ever be subsetting context hunks
hunk_sub <- function(hunk, op, n) {
stopifnot(
op %in% c("head", "tail"),
hunk$context, all(hunk$tar.rng.sub),
length(hunk$tar.rng.sub) == length(hunk$cur.rng.sub),
diff(hunk$tar.rng.sub) == diff(hunk$cur.rng.sub),
length(hunk$tar.rng.sub) == 2L
)
hunk.len <- diff(hunk$tar.rng.sub) + 1L
len.diff <- hunk.len - n
if(len.diff >= 0) {
nm <- c("A", "B", "A.tok.ratio", "B.tok.ratio")
hunk[nm] <- lapply(hunk[nm], op, n)
# Need to recompute ranges
if(n) {
if(op == "tail") {
hunk$tar.rng.trim[[1L]] <- hunk$tar.rng.sub[[1L]] <-
hunk$tar.rng.sub[[1L]] + len.diff
hunk$cur.rng.trim[[1L]] <- hunk$cur.rng.sub[[1L]] <-
hunk$cur.rng.sub[[1L]] + len.diff
} else {
hunk$tar.rng.trim[[2L]] <- hunk$tar.rng.sub[[2L]] <-
hunk$tar.rng.sub[[2L]] - len.diff
hunk$cur.rng.trim[[2L]] <- hunk$cur.rng.sub[[2L]] <-
hunk$cur.rng.sub[[2L]] - len.diff
}
} else {
hunk$tar.rng.trim <- hunk$cur.rng.trim <- hunk$tar.rng.sub <-
hunk$cur.rng.sub <- integer(2L)
}
}
hunk
}
# Figure Out Context for Each Chunk
#
# If a hunk bleeds into another due to context then it becomes part of the
# other hunk.
#
# This will group atomic hunks into hunk groups with matching line in excess of
# context removed.
process_hunks <- function(x, ctx.val, etc) {
context <- ctx.val
ctx.vec <- vapply(x, "[[", logical(1L), "context")
if(!all(abs(diff(ctx.vec)) == 1L))
# nocov start
stop(
"Logic Error: atomic hunks not interspersing context; contact maintainer."
)
# nocov end
hunk.len <- length(x)
# Special cases, including only one hunk or forcing only one hunk group, or
# no differences
if(context < 0L || hunk.len < 2L || !any(ctx.vec)) {
res.l <- list(x)
} else {
# Normal cases; allocate maximum possible number of elements, may need fewer
# if hunks bleed into each other
res.l <- vector("list", sum(!ctx.vec))
# Jump through every second value as those are the mismatch hunks, though
# first figure out if first hunk is mismatching, and merge hunks. This
# is likely not super efficient as we keep growing a list, though the only
# thing we are actually re-allocating is the list index really, at least if
# R is being smart about not copying the list contents (which as of 3.1 I
# think it is...)
i <- if(ctx.vec[[1L]]) 2L else 1L
j <- 1L
while(i <= hunk.len) {
# Merge left
res.l[[j]] <- if(i - 1L)
list(hunk_sub(x[[i - 1L]], "tail", context), x[[i]]) else x[i]
# Merge right
if(i < hunk.len) {
# Hunks bleed into next hunk due to context; note that i + 1L will always
# be a context hunk, so $A is fully representative
while(
i < hunk.len && length(x[[i + 1L]]$A) <= context * 2 &&
i + 1L < length(x)
) {
res.l[[j]] <- append(res.l[[j]], x[i + 1L])
if(i < hunk.len - 1L)
res.l[[j]] <- append(res.l[[j]], x[i + 2L])
i <- i + 2L
}
# Context enough to cause a break
if(i < hunk.len) {
res.l[[j]] <- append(
res.l[[j]], list(hunk_sub(x[[i + 1L]], "head", context))
) } }
j <- j + 1L
i <- i + 2L
}
length(res.l) <- j - 1L
}
# Add back the guide hunks if needed they didn't make it in as part of the
# context or differences. It should be the case that the only spot that could
# have missing hunk guides is the first hunk in a hunk group if it is a
# context hunk
# First, determine which guides if any need to be added back; need to do it
# first because it is possible that a guide is present at the end context
# of the prior hunk group
# Helper fun to pull out indices of guide.lines
get_guides <- function(hunk, rows, mode) {
stopifnot(hunk$context)
rng <- hunk[[sprintf("%s.rng", mode)]]
rng.sub <- hunk[[sprintf("%s.rng.sub", mode)]]
h.rows <- rows[which(!rows %bw% rng.sub & rows %bw% rng)]
# If context hunk already contains guide row and there is a non guide at
# beginning of hunk, then we don't need to return a guide row
if(any(rows %bw% rng.sub) && !rng.sub[[1L]] %in% rows) {
integer(0L)
} else {
# special case where the first row in the subbed hunk is a context row;
# note we need to look at the first non-blank row; since this has to be
# a context hunk we can just look at A.chr
first.is.guide <- FALSE
if(rng.sub[[1L]] %in% rows) {
first.is.guide <- TRUE
h.rows <- c(h.rows, rng.sub[[1L]])
}
# we want all guide.lines that abut the last matched guide row
if(length(h.rows)) {
h.fin <-
h.rows[seq(to=max(h.rows), length.out=length(h.rows)) == h.rows]
if(first.is.guide) h.fin <- head(h.fin, -1L)
# convert back to indeces relative to hunk
h.fin - rng[[1L]] + 1L
} else integer(0L)
}
}
for(k in seq_along(res.l)) {
if(length(res.l[[k]]) && res.l[[k]][[1L]]$context) {
h <- res.l[[k]][[1L]]
h.o <- x[[res.l[[k]][[1L]]$id]] # retrieve original untrimmed hunk
if(!
identical(
h$tar.rng.sub,
h$cur.rng.sub - h$cur.rng.sub[1L] + h$tar.rng.sub[1L]
) )
stop("Logic Error: unequal context hunks; contact mainainer") # nocov
# since in a context hunk, everything in tar and cur is the same, so
# we just need to recompute the `cur` guidelines relative to tar indices
# since the guidelines need not be the same (e.g., in lists that are
# mostly the same, but deeper in one object, guideline will be deepest
# index entry, which will be different.
tar.cand.guides <- intersect(
etc@guide.lines@target, seq(h$tar.rng[1L], h$tar.rng[2L], by=1L)
)
cur.cand.guides <- intersect(
etc@guide.lines@current, seq(h$cur.rng[1L], h$cur.rng[2L], by=1L)
) - h$cur.rng[1L] + h$tar.rng[1L]
h.guides <- get_guides(
h, unique(c(tar.cand.guides, cur.cand.guides)), "tar"
)
if(length(h.guides)) {
h.h <- hunk_sub(h.o, "head", max(h.guides))
tail.ind <- if(length(h.guides) == 1L) 1L else
diff(range(h.guides)) + 1L
h.fin <- hunk_sub(h.h, "tail", tail.ind)
h.fin$guide <- TRUE
res.l[[k]] <- c(list(h.fin), res.l[[k]])
} } }
# Finalize, including sizing correctly, and setting the ids to the right
# values since we potentially duplicated some context hunks
res.fin <- res.l
k <- 1L
for(i in seq_along(res.fin)) {
for(j in seq_along(res.fin[[i]])) {
res.fin[[i]][[j]][["id"]] <- k
k <- k + 1L
}
}
res.fin
}
# Account for overhead / side by sideness in width calculations
# Internal funs
hunk_len <- function(hunk.id, hunks, tar.capt, cur.capt, etc) {
disp.width <- etc@disp.width
mode <- etc@mode
hunk <- hunks[[hunk.id]]
A.lines <-
nlines(get_dat_raw(hunk$A, tar.capt, cur.capt), disp.width, mode, etc)
B.lines <-
nlines(get_dat_raw(hunk$B, tar.capt, cur.capt), disp.width, mode, etc)
# Depending on each mode, figure out how to set up the lines;
# straightforward except for context where we need to account for the
# fact that all the A of a hunk group are shown first, and then all
# the B are shown
lines.out <- switch(
mode,
context=c(A.lines, if(!hunk$guide) -B.lines),
unified=c(A.lines),
sidebyside={
max.len <- max(length(A.lines), length(B.lines))
length(A.lines) <- length(B.lines) <- max.len
c(pmax(A.lines, B.lines, na.rm=TRUE))
},
stop("Logic Error: unknown mode '", mode, "' contact maintainer")
)
# Make sure that line.id refers to the position of the line in either
# original A or B vector
l.o.len <- length(lines.out)
line.id <- integer(l.o.len)
l.gt.z <- lines.out > 0L
l.gt.z.w <- which(l.gt.z)
line.id[l.gt.z.w] <- seq_along(l.gt.z.w)
l.lt.z.w <- which(!l.gt.z)
line.id[l.lt.z.w] <- seq_along(l.lt.z.w)
cbind(
hunk.id=if(length(lines.out)) hunk.id else integer(),
line.id=unname(line.id), len=lines.out
)
}
hunk_grp_len <- function(
hunk.grp.id, hunk.grps, etc, tar.capt, cur.capt
) {
mode <- etc@mode
hunks <- hunk.grps[[hunk.grp.id]]
hunks.proc <- lapply(
seq_along(hunks), hunk_len, hunks=hunks, etc=etc,
tar.capt=tar.capt, cur.capt=cur.capt
)
res.tmp <- do.call(rbind, hunks.proc)
res <- cbind(grp.id=if(nrow(res.tmp)) hunk.grp.id else integer(0L), res.tmp)
# Need to make sure all positives are first, and all negatives second, if
# there are negatives (context mode); also, if the first hunk in a hunk
# group, add a line for the hunk header, though hunk header itself is added
# later
extra <- if(length(hunks)) 1L else 0L
if(identical(mode, "context"))
res <- res[order(res[, "len"] < 0L), , drop=FALSE]
if(
identical(mode, "context") &&
length(negs <- which(res[, "len"] < 0L)) &&
length(poss <- which(res[, "len"] > 0L))
) {
# Add one for hunk header, one for context separator; remember, that lengths
# in the B hunk are counted negatively
res[1L, "len"] <- res[1L, "len"] + extra
res[negs[[1L]], "len"] <- res[negs[[1L]], "len"] - extra
} else if(nrow(res)) {
res[1L, "len"] <- res[1L, "len"] + extra
}
res
}
# Compute how many lines the display version of the diff will take, meta
# lines (used for hunk guides) are denoted by negatives
#
# count lines for each remaining hunk and figure out if we need to cut some
# hunks off; note that "negative" lengths indicate the lines being counted
# originated from the B hunk in context mode
get_hunk_chr_lens <- function(hunk.grps, etc, tar.capt, cur.capt) {
mode <- etc@mode
disp.width <- etc@disp.width
# Generate a matrix with hunk group id, hunk id, and wrapped length of each
# line that we can use to figure out what to show
do.call(
rbind,
lapply(
seq_along(hunk.grps), hunk_grp_len, etc=etc, tar.capt=tar.capt,
cur.capt=cur.capt, hunk.grps=hunk.grps
) )
}
# Compute total diff length in lines
diff_line_len <- function(hunk.grps, etc, tar.capt, cur.capt) {
max(
0L,
cumsum(
get_hunk_chr_lens(
hunk.grps, etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
)[, "len"]
)
) + banner_len(etc@mode)
}
# completely.empty used to highlight difference between hunks that technically
# contain a header and no data vs those that can't even contain a header;
# unfortunately a legacy of poor design choice in how headers are handled
empty_hunk_grp <- function(h.g) {
for(j in seq_along(h.g)) {
h.g[[j]][c("tar.rng.trim", "cur.rng.trim")] <-
list(integer(2L), integer(2L))
h.g[[j]]$completely.empty <- TRUE
}
h.g
}
# Remove hunk groups and atomic hunks that exceed the line limit
#
# Return value is a hunk group list, with an attribute indicating how many
# hunks and lines were trimmed
trim_hunk <- function(hunk, type, line.id) {
stopifnot(type %in% c("tar", "cur"))
rng.idx <- sprintf("%s.rng.trim", type)
hunk[[rng.idx]] <- if(!line.id) integer(2L) else {
if(all(hunk[[rng.idx]])) {
c(
hunk[[rng.idx]][[1L]],
min(hunk[[rng.idx]][[1L]] + line.id - 1L, hunk[[rng.idx]][[2L]])
)
} else integer(2L)
}
hunk
}
trim_hunks <- function(hunk.grps, etc, tar.raw, cur.raw) {
stopifnot(is(etc, "Settings"))
mode <- etc@mode
disp.width <- etc@disp.width
hunk.limit <- etc@hunk.limit
line.limit <- etc@line.limit
diffs.orig <- count_diffs(hunk.grps)
hunk.grps.count <- length(hunk.grps)
if(hunk.limit[[1L]] < 0L) hunk.limit <- rep(hunk.grps.count, 2L)
hunk.limit.act <- if(hunk.grps.count > hunk.limit[[1L]]) hunk.limit[[2L]]
hunk.grps.omitted <- max(0L, hunk.grps.count - hunk.limit.act)
hunk.grps.used <- min(hunk.grps.count, hunk.limit.act)
hunk.grps <- hunk.grps[seq_len(hunk.grps.used)]
lines <- get_hunk_chr_lens(
hunk.grps, etc=etc, tar.capt=tar.raw, cur.capt=cur.raw
)
cum.len <- cumsum(abs(lines[, "len"]))
cut.off <- -1L
lines.omitted <- 0L
lines.total <- max(0L, tail(cum.len, 1L))
if(line.limit[[1L]] < 0L) {
cut.off <- max(0L, cum.len)
} else if(any(cum.len > line.limit[[1L]])) {
cut.off <- max(0L, cum.len[cum.len <= line.limit[[2L]]])
}
if(cut.off > 0) {
lines.omitted <- lines.total - cut.off
cut.dat <- lines[max(which(cum.len <= cut.off)), ]
grp.cut <- cut.dat[["grp.id"]]
hunk.cut <- cut.dat[["hunk.id"]]
line.cut <- cut.dat[["line.id"]]
line.neg <- cut.dat[["len"]] < 0
# completely trim hunks that will not be shown
grps.to.cut <- setdiff(seq_along(hunk.grps), seq_len(grp.cut))
for(i in grps.to.cut) hunk.grps[[i]] <- empty_hunk_grp(hunk.grps[[i]])
hunk.grps.used <- grp.cut
hunk.grps.omitted <- max(0L, hunk.grps.count - grp.cut)
# Remove excess lines from the atomic hunks based on the limits; we don't
# update the ranges as those should still indicate what the original
# untrimmed range was
# special case for first hunk in group since we need to account for hunk
# header that takes up a line; this is not ideal, hunk header should be
# made part of hunks eventually
if(mode == "context") {
# Context tricky because every atomic hunk B data is displayed after all
# the A data
for(i in seq_along(hunk.grps[[grp.cut]])) {
hunk.atom <- hunk.grps[[grp.cut]][[i]]
if(!line.neg) { # means all B blocks must be dropped
hunk.atom <- trim_hunk(hunk.atom, "cur", 0L)
if(i > hunk.cut) {
hunk.atom <- trim_hunk(hunk.atom, "tar", 0L)
} else if (i == hunk.cut) {
hunk.atom <- trim_hunk(hunk.atom, "tar", line.cut)
}
} else {
if(i > hunk.cut) {
hunk.atom <- trim_hunk(hunk.atom, "cur", 0L)
} else if (i == hunk.cut) {
hunk.atom <- trim_hunk(hunk.atom, "cur", line.cut)
}
}
hunk.grps[[grp.cut]][[i]] <- hunk.atom
}
} else {
hunk.atom <- hunk.grps[[grp.cut]][[hunk.cut]]
hunk.atom <- trim_hunk(hunk.atom, "tar", line.cut)
if(mode == "unified") {
# Need to share lines between tar and cur in unified mode
line.cut <- max(
0L, line.cut - if(any(hunk.atom$tar.rng))
diff(hunk.atom$tar.rng) + 1L else 0L
)
}
hunk.atom <- trim_hunk(hunk.atom, "cur", line.cut)
hunk.grps[[grp.cut]][[hunk.cut]] <- hunk.atom
null.hunks <- seq_len(length(hunk.grps[[grp.cut]]) - hunk.cut) + hunk.cut
hunk.grps[[grp.cut]][null.hunks] <- lapply(
hunk.grps[[grp.cut]][null.hunks],
function(h.a) {
h.a <- trim_hunk(h.a, "cur", 0L)
h.a <- trim_hunk(h.a, "tar", 0L)
h.a
} ) }
} else if (!cut.off && length(cum.len)) {
lines.omitted <- lines.total
hunk.grps.omitted <- hunk.grps.count
for(i in seq_along(hunk.grps))
hunk.grps[[i]] <- empty_hunk_grp(hunk.grps[[i]])
}
diffs.trim <- count_diffs(hunk.grps)
attr(hunk.grps, "meta") <- list(
lines=as.integer(c(lines.omitted, lines.total)),
hunks=as.integer(c(hunk.grps.omitted, hunk.grps.count)),
diffs=as.integer(c(diffs.orig - diffs.trim, diffs.orig))
)
hunk.grps
}
# Helper fun
line_count <- function(rng) if(rng[[1L]]) rng[[2L]] - rng[[1L]] + 1L else 0L
# Count how many "lines" of differences there are in the hunks
#
# Counts original diff lines, not lines left after trim. This is because
# we are checking for 'str' folding, and 'str' folding should only happen
# if the folded results fits fully within limit.
#
# param x should be a hunk group list
count_diffs <- function(x) {
sum(
vapply(
unlist(x, recursive=FALSE),
function(y)
if(y$context) 0L else line_count(y$tar.rng) + line_count(y$cur.rng),
integer(1L)
) ) }
# More detailed counting of differences; note that context counting is messed
# up b/c context's are duplicated around each hunk. This is primarily used for
# the summary method
count_diffs_detail <- function(x) {
x.flat <- unlist(x, recursive=FALSE)
guides <- vapply(x.flat, "[[", logical(1L), "guide")
vapply(
x.flat[!guides],
function(y)
if(y$context) c(match=line_count(y$tar.rng), delete=0L, add=0L)
else c(match=0L, delete=line_count(y$tar.rng), add=line_count(y$cur.rng)),
integer(3L)
) }
count_diff_hunks <- function(x)
sum(!vapply(unlist(x, recursive=FALSE), "[[", logical(1L), "context"))
|