File: hunks.R

package info (click to toggle)
r-cran-diffobj 0.3.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,432 kB
  • sloc: ansic: 455; javascript: 96; sh: 32; makefile: 8
file content (691 lines) | stat: -rwxr-xr-x 24,362 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
# Copyright (C) 2021 Brodie Gaslam
#
# This file is part of "diffobj - Diffs for R Objects"
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# Go to <https://www.r-project.org/Licenses/GPL-2> for a copy of the license.


# Convert ses data into raw hunks that include both match hunks as well as
# actual hunks
#
# These hunks are then processed into hunk groups in a separate step
# (see `group_hunks`).
#
# @return a list of atomic hunks, each containing integer vectors A and B where
#   positive numbers reference character lines from target and negative ones
#   from current.  For "context" and "sidebyside" mode the A vector will contain
#   the lines from target, and the B vector the lines from current.  For
#   "unified" only the A vector is populated.  In addition to the A and B
#   vectors some other meta data is tracked, such as the range of the hunks is
#   also stored as tar.rng and cur.rng; mostly inferrable from the actual data
#   in the hunks, except that in unified mode we no longer have the actual
#   context strings from the `current` vector.
#
# starting to have second thoughts about removing all the non index data from
# hunks, particularly because it makes the line length calc a pita.

setGeneric("as.hunks", function(x, etc, ...) standardGeneric("as.hunks"))
setMethod("as.hunks", c("MyersMbaSes", "Settings"),
  function(
    x, etc, ...
  ) {
    # Split our data into sections that have either deletes/inserts or matches

    dat <- as.matrix(x)
    sects <- unique(dat[, "section"])
    j <- 0L

    res.l <- if(!nrow(dat)) {
      # Minimum one empty hunk if nothing; make this a context hunk to indicate
      # that there are no differences.  This used to be a non-context hunk

      list(
        list(
          id=1L, A=integer(0L), B=integer(0L),
          context=TRUE, guide=FALSE, tar.rng=integer(2L), cur.rng=integer(2L),
          tar.rng.sub=integer(2L), cur.rng.sub=integer(2L),
          tar.rng.trim=integer(2L), cur.rng.trim=integer(2L),
          completely.empty=TRUE
        )
      )
    } else {
      lapply(
        seq_along(sects),
        function(i) {
          s <- sects[i]
          d <- dat[which(dat[, "section"] == s), , drop=FALSE]
          d.del <- d[which(.edit.map[d[, "type"]] == "Delete"), ,drop=FALSE]
          d.ins <- d[which(.edit.map[d[, "type"]] == "Insert"), ,drop=FALSE]
          d.mtc <- d[which(.edit.map[d[, "type"]] == "Match"), ,drop=FALSE]
          # R 3.3.3 had sum(integer(0)) == 1!
          del.len <- if(nrow(d.del)) sum(d.del[, "len"]) else 0L
          ins.len <- if(nrow(d.ins)) sum(d.ins[, "len"]) else 0L
          mtc.len <- if(nrow(d.mtc)) sum(d.mtc[, "len"]) else 0L
          tar.len <- del.len + mtc.len
          cur.len <- ins.len + mtc.len

          # atomic hunks may only be del/ins or match, not both

          if((del.len || ins.len) && mtc.len || !(del.len + ins.len + mtc.len))
            stop("Logic Error: unknown edit types; contact maintainer.") # nocov

          # Figure out where previous hunk left off

          del.last <- if(nrow(d.del)) d.del[1L, "last.a"] else d[1L, "last.a"]
          ins.last <- if(nrow(d.ins)) d.ins[1L, "last.b"] else d[1L, "last.b"]
          A.start <- unname(del.last)
          B.start <- unname(ins.last)

          # record `cur` indices as negatives

          tar <- seq_len(tar.len) + A.start
          cur <- -(seq_len(cur.len) + B.start)

          context <- !!mtc.len

          A <- switch(
            etc@mode, context=tar,
            unified=c(tar, if(!context) cur), sidebyside=tar,
            stop("Logic Error: unknown mode; contact maintainer.")
          )
          B <- switch(
            etc@mode, context=cur, unified=integer(), sidebyside=cur,
            stop("Logic Error: unknown mode; contact maintainer.")
          )
          # compute ranges

          tar.rng <- cur.rng <- integer(2L)
          if(tar.len) tar.rng <- c(A.start + 1L, A.start + tar.len)
          if(cur.len) cur.rng <- c(B.start + 1L, B.start + cur.len)

          list(
            id=i, A=A, B=B, context=context, guide=FALSE,
            tar.rng=tar.rng, cur.rng=cur.rng,
            tar.rng.sub=tar.rng, cur.rng.sub=cur.rng,
            tar.rng.trim=tar.rng, cur.rng.trim=cur.rng,
            completely.empty=FALSE
          )
    } ) }
    res.l
} )

# Group hunks together based on context, in "auto" mode we find the context
# that maximizes lines displayed while adhering to line and hunk limits
# Definitely not very efficient since we re-run code multiple times we
# probably don't need to.
#
#   Important: context atomic hunks are duplicated anytime there is enough
#   context that we only show part of the context hunk.
#
# @return a list containing lists of atomic hunks.  Each of these sub-lists
#   of atomic hunks is treated as a "hunk", but is really a combination of
#   context and hunks which we will refer to as "hunk group".  In each hunk
#   group, There may be as little as one hunk with no context, or many hunks and
#   context if the context between hunks is not sufficient to meet the requested
#   context, in which case the hunks bleed together forming these hunk groups.

group_hunks <- function(hunks, etc, tar.capt, cur.capt) {
  context <- etc@context
  line.limit <- etc@line.limit
  ctx.val <- if(is(context, "AutoContext")) {
    len <- diff_line_len(
      p_and_t_hunks(hunks, ctx.val=context@max, etc=etc),
      etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
    )
    len.min <- diff_line_len(
      p_and_t_hunks(hunks, ctx.val=context@min, etc=etc),
      etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
    )
    if(line.limit[[1L]] < 0L) {
      context@max
    } else if(len.min > line.limit[[1L]]) {
      context@min
    } else {
      ctx.max <- ctx.hi <- ctx <- context@max
      ctx.lo <- context@min
      safety <- 0L

      repeat {
        if((safety <- safety + 1L) > ctx.max)
          # nocov start
          stop(
            "Logic Error: stuck trying to find auto-context; contact ",
            "maintainer."
          )
          # nocov end
        if(len > line.limit[[1L]] && ctx - ctx.lo > 1L) {
          ctx.hi <- ctx
          ctx <- as.integer((ctx - ctx.lo) / 2)
        } else if (len < line.limit[[1L]] && ctx.hi - ctx > 1L) {
          ctx.lo <- ctx
          ctx <- ctx + as.integer(ceiling(ctx.hi - ctx) / 2)
        } else if (len > line.limit[[1L]]) {
          # unable to get something small enough, but we know min context
          # works from inital test
          ctx <- context@min
          break
        } else if (len <= line.limit[[1L]]) {
          break
        }
        len <- diff_line_len(
          p_and_t_hunks(hunks, ctx.val=ctx, etc=etc),
          etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
        )
      }
      ctx
    }
  } else context

  res <- process_hunks(hunks, ctx.val=ctx.val, etc=etc)
  res
}
# process the hunks and also drop off groups that exceed limit
#
# used exclusively when we are trying to auto-calculate context

p_and_t_hunks <- function(hunks.raw, ctx.val, etc) {
  c.all <- process_hunks(hunks.raw, ctx.val, etc)
  hunk.limit <- etc@hunk.limit
  if(hunk.limit[[1L]] >= 0L && length(c.all) > hunk.limit[[1L]])
    c.all <- c.all[seq_along(hunk.limit[[2L]])]
  c.all
}

# Subset hunks; should only ever be subsetting context hunks

hunk_sub <- function(hunk, op, n) {
  stopifnot(
    op %in% c("head", "tail"),
    hunk$context, all(hunk$tar.rng.sub),
    length(hunk$tar.rng.sub) == length(hunk$cur.rng.sub),
    diff(hunk$tar.rng.sub) == diff(hunk$cur.rng.sub),
    length(hunk$tar.rng.sub) == 2L
  )
  hunk.len <- diff(hunk$tar.rng.sub) + 1L
  len.diff <- hunk.len - n
  if(len.diff >= 0) {
    nm <- c("A", "B", "A.tok.ratio", "B.tok.ratio")
    hunk[nm] <- lapply(hunk[nm], op, n)

    # Need to recompute ranges

    if(n) {
      if(op == "tail") {
        hunk$tar.rng.trim[[1L]] <- hunk$tar.rng.sub[[1L]] <-
          hunk$tar.rng.sub[[1L]] + len.diff
        hunk$cur.rng.trim[[1L]] <- hunk$cur.rng.sub[[1L]] <-
          hunk$cur.rng.sub[[1L]] + len.diff
      } else {
        hunk$tar.rng.trim[[2L]] <- hunk$tar.rng.sub[[2L]] <-
          hunk$tar.rng.sub[[2L]] - len.diff
        hunk$cur.rng.trim[[2L]] <- hunk$cur.rng.sub[[2L]] <-
          hunk$cur.rng.sub[[2L]] - len.diff
      }
    } else {
      hunk$tar.rng.trim <- hunk$cur.rng.trim <- hunk$tar.rng.sub <-
        hunk$cur.rng.sub <- integer(2L)
    }
  }
  hunk
}
# Figure Out Context for Each Chunk
#
# If a hunk bleeds into another due to context then it becomes part of the
# other hunk.
#
# This will group atomic hunks into hunk groups with matching line in excess of
# context removed.

process_hunks <- function(x, ctx.val, etc) {
  context <- ctx.val
  ctx.vec <- vapply(x, "[[", logical(1L), "context")
  if(!all(abs(diff(ctx.vec)) == 1L))
    # nocov start
    stop(
      "Logic Error: atomic hunks not interspersing context; contact maintainer."
    )
    # nocov end

  hunk.len <- length(x)

  # Special cases, including only one hunk or forcing only one hunk group, or
  # no differences

  if(context < 0L || hunk.len < 2L || !any(ctx.vec)) {
    res.l <- list(x)
  } else {
    # Normal cases; allocate maximum possible number of elements, may need fewer
    # if hunks bleed into each other

    res.l <- vector("list", sum(!ctx.vec))

    # Jump through every second value as those are the mismatch hunks, though
    # first figure out if first hunk is mismatching, and merge hunks.  This
    # is likely not super efficient as we keep growing a list, though the only
    # thing we are actually re-allocating is the list index really, at least if
    # R is being smart about not copying the list contents (which as of 3.1 I
    # think it is...)

    i <- if(ctx.vec[[1L]]) 2L else 1L
    j <- 1L
    while(i <= hunk.len) {
      # Merge left

      res.l[[j]] <- if(i - 1L)
        list(hunk_sub(x[[i - 1L]], "tail", context), x[[i]]) else x[i]

      # Merge right

      if(i < hunk.len) {
        # Hunks bleed into next hunk due to context; note that i + 1L will always
        # be a context hunk, so $A is fully representative

        while(
          i < hunk.len && length(x[[i + 1L]]$A) <= context * 2 &&
          i + 1L < length(x)
        ) {
          res.l[[j]] <- append(res.l[[j]], x[i + 1L])
          if(i < hunk.len - 1L)
            res.l[[j]] <- append(res.l[[j]], x[i + 2L])
          i <- i + 2L
        }
        # Context enough to cause a break

        if(i < hunk.len) {
          res.l[[j]] <- append(
            res.l[[j]], list(hunk_sub(x[[i + 1L]], "head", context))
      ) } }
      j <- j + 1L
      i <- i + 2L
    }
    length(res.l) <- j - 1L
  }
  # Add back the guide hunks if needed they didn't make it in as part of the
  # context or differences.  It should be the case that the only spot that could
  # have missing hunk guides is the first hunk in a hunk group if it is a
  # context hunk

  # First, determine which guides if any need to be added back; need to do it
  # first because it is possible that a guide is present at the end context
  # of the prior hunk group

  # Helper fun to pull out indices of guide.lines

  get_guides <- function(hunk, rows, mode) {
    stopifnot(hunk$context)
    rng <- hunk[[sprintf("%s.rng", mode)]]
    rng.sub <- hunk[[sprintf("%s.rng.sub", mode)]]
    h.rows <- rows[which(!rows %bw% rng.sub & rows %bw% rng)]

    # If context hunk already contains guide row and there is a non guide at
    # beginning of hunk, then we don't need to return a guide row

    if(any(rows %bw% rng.sub) && !rng.sub[[1L]] %in% rows) {
      integer(0L)
    } else {
      # special case where the first row in the subbed hunk is a context row;
      # note we need to look at the first non-blank row; since this has to be
      # a context hunk we can just look at A.chr

      first.is.guide <- FALSE

      if(rng.sub[[1L]] %in% rows) {
        first.is.guide <- TRUE
        h.rows <- c(h.rows, rng.sub[[1L]])
      }
      # we want all guide.lines that abut the last matched guide row

      if(length(h.rows)) {
        h.fin <-
          h.rows[seq(to=max(h.rows), length.out=length(h.rows)) == h.rows]
        if(first.is.guide) h.fin <- head(h.fin, -1L)
        # convert back to indeces relative to hunk
        h.fin - rng[[1L]] + 1L
      } else integer(0L)
    }
  }
  for(k in seq_along(res.l)) {
    if(length(res.l[[k]]) && res.l[[k]][[1L]]$context) {
      h <- res.l[[k]][[1L]]
      h.o <- x[[res.l[[k]][[1L]]$id]]  # retrieve original untrimmed hunk
      if(!
        identical(
          h$tar.rng.sub,
          h$cur.rng.sub - h$cur.rng.sub[1L] + h$tar.rng.sub[1L]
      ) )
        stop("Logic Error: unequal context hunks; contact mainainer") # nocov

      # since in a context hunk, everything in tar and cur is the same, so
      # we just need to recompute the `cur` guidelines relative to tar indices
      # since the guidelines need not be the same (e.g., in lists that are
      # mostly the same, but deeper in one object, guideline will be deepest
      # index entry, which will be different.

      tar.cand.guides <- intersect(
        etc@guide.lines@target, seq(h$tar.rng[1L], h$tar.rng[2L], by=1L)
      )
      cur.cand.guides <- intersect(
        etc@guide.lines@current, seq(h$cur.rng[1L], h$cur.rng[2L], by=1L)
      ) - h$cur.rng[1L] + h$tar.rng[1L]
      h.guides <- get_guides(
        h, unique(c(tar.cand.guides, cur.cand.guides)), "tar"
      )
      if(length(h.guides)) {
        h.h <- hunk_sub(h.o, "head", max(h.guides))
        tail.ind <- if(length(h.guides) == 1L) 1L else
          diff(range(h.guides)) + 1L
        h.fin <- hunk_sub(h.h, "tail", tail.ind)
        h.fin$guide <- TRUE
        res.l[[k]] <- c(list(h.fin), res.l[[k]])
  } } }
  # Finalize, including sizing correctly, and setting the ids to the right
  # values since we potentially duplicated some context hunks

  res.fin <- res.l
  k <- 1L
  for(i in seq_along(res.fin)) {
    for(j in seq_along(res.fin[[i]])) {
      res.fin[[i]][[j]][["id"]] <- k
      k <- k + 1L
    }
  }
  res.fin
}
# Account for overhead / side by sideness in width calculations
# Internal funs

hunk_len <- function(hunk.id, hunks, tar.capt, cur.capt, etc) {
  disp.width <- etc@disp.width
  mode <- etc@mode
  hunk <- hunks[[hunk.id]]
  A.lines <-
    nlines(get_dat_raw(hunk$A, tar.capt, cur.capt), disp.width, mode, etc)
  B.lines <-
    nlines(get_dat_raw(hunk$B, tar.capt, cur.capt), disp.width, mode, etc)

  # Depending on each mode, figure out how to set up the lines;
  # straightforward except for context where we need to account for the
  # fact that all the A of a hunk group are shown first, and then all
  # the B are shown

  lines.out <- switch(
    mode,
    context=c(A.lines, if(!hunk$guide) -B.lines),
    unified=c(A.lines),
    sidebyside={
      max.len <- max(length(A.lines), length(B.lines))
      length(A.lines) <- length(B.lines) <- max.len
      c(pmax(A.lines, B.lines, na.rm=TRUE))
    },
    stop("Logic Error: unknown mode '", mode, "' contact maintainer")
  )
  # Make sure that line.id refers to the position of the line in either
  # original A or B vector

  l.o.len <- length(lines.out)
  line.id <- integer(l.o.len)
  l.gt.z <- lines.out > 0L
  l.gt.z.w <- which(l.gt.z)
  line.id[l.gt.z.w] <- seq_along(l.gt.z.w)
  l.lt.z.w <- which(!l.gt.z)
  line.id[l.lt.z.w] <- seq_along(l.lt.z.w)
  cbind(
    hunk.id=if(length(lines.out)) hunk.id else integer(),
    line.id=unname(line.id), len=lines.out
  )
}
hunk_grp_len <- function(
  hunk.grp.id, hunk.grps, etc, tar.capt, cur.capt
) {
  mode <- etc@mode
  hunks <- hunk.grps[[hunk.grp.id]]
  hunks.proc <- lapply(
    seq_along(hunks), hunk_len, hunks=hunks, etc=etc,
    tar.capt=tar.capt, cur.capt=cur.capt
  )
  res.tmp <- do.call(rbind, hunks.proc)
  res <- cbind(grp.id=if(nrow(res.tmp)) hunk.grp.id else integer(0L), res.tmp)

  # Need to make sure all positives are first, and all negatives second, if
  # there are negatives (context mode); also, if the first hunk in a hunk
  # group, add a line for the hunk header, though hunk header itself is added
  # later

  extra <- if(length(hunks)) 1L else 0L
  if(identical(mode, "context"))
    res <- res[order(res[, "len"] < 0L), , drop=FALSE]
  if(
    identical(mode, "context") &&
    length(negs <- which(res[, "len"] < 0L)) &&
    length(poss <- which(res[, "len"] > 0L))
  ) {
    # Add one for hunk header, one for context separator; remember, that lengths
    # in the B hunk are counted negatively
    res[1L, "len"] <- res[1L, "len"] + extra
    res[negs[[1L]], "len"] <- res[negs[[1L]], "len"] - extra
  } else if(nrow(res)) {
    res[1L, "len"] <- res[1L, "len"] + extra
  }
  res
}
# Compute how many lines the display version of the diff will take, meta
# lines (used for hunk guides) are denoted by negatives
#
# count lines for each remaining hunk and figure out if we need to cut some
# hunks off; note that "negative" lengths indicate the lines being counted
# originated from the B hunk in context mode

get_hunk_chr_lens <- function(hunk.grps, etc, tar.capt, cur.capt) {
  mode <- etc@mode
  disp.width <- etc@disp.width
  # Generate a matrix with hunk group id, hunk id, and wrapped length of each
  # line that we can use to figure out what to show

  do.call(
    rbind,
    lapply(
      seq_along(hunk.grps), hunk_grp_len, etc=etc, tar.capt=tar.capt,
      cur.capt=cur.capt, hunk.grps=hunk.grps
  ) )
}
# Compute total diff length in lines

diff_line_len <- function(hunk.grps, etc, tar.capt, cur.capt) {
  max(
    0L,
    cumsum(
      get_hunk_chr_lens(
        hunk.grps, etc=etc, tar.capt=tar.capt, cur.capt=cur.capt
      )[, "len"]
    )
  ) + banner_len(etc@mode)
}
# completely.empty used to highlight difference between hunks that technically
# contain a header and no data vs those that can't even contain a header;
# unfortunately a legacy of poor design choice in how headers are handled

empty_hunk_grp <- function(h.g) {
  for(j in seq_along(h.g)) {
    h.g[[j]][c("tar.rng.trim", "cur.rng.trim")] <-
      list(integer(2L), integer(2L))
    h.g[[j]]$completely.empty <- TRUE
  }
  h.g
}
# Remove hunk groups and atomic hunks that exceed the line limit
#
# Return value is a hunk group list, with an attribute indicating how many
# hunks and lines were  trimmed

trim_hunk <- function(hunk, type, line.id) {
  stopifnot(type %in% c("tar", "cur"))
  rng.idx <- sprintf("%s.rng.trim", type)
  hunk[[rng.idx]] <- if(!line.id) integer(2L) else {
    if(all(hunk[[rng.idx]])) {
      c(
        hunk[[rng.idx]][[1L]],
        min(hunk[[rng.idx]][[1L]] + line.id - 1L, hunk[[rng.idx]][[2L]])
      )
    } else integer(2L)
  }
  hunk
}
trim_hunks <- function(hunk.grps, etc, tar.raw, cur.raw) {
  stopifnot(is(etc, "Settings"))

  mode <- etc@mode
  disp.width <- etc@disp.width
  hunk.limit <- etc@hunk.limit
  line.limit <- etc@line.limit
  diffs.orig <- count_diffs(hunk.grps)

  hunk.grps.count <- length(hunk.grps)
  if(hunk.limit[[1L]] < 0L) hunk.limit <- rep(hunk.grps.count, 2L)
  hunk.limit.act <- if(hunk.grps.count > hunk.limit[[1L]]) hunk.limit[[2L]]

  hunk.grps.omitted <- max(0L, hunk.grps.count - hunk.limit.act)
  hunk.grps.used <- min(hunk.grps.count, hunk.limit.act)
  hunk.grps <- hunk.grps[seq_len(hunk.grps.used)]

  lines <- get_hunk_chr_lens(
    hunk.grps, etc=etc, tar.capt=tar.raw, cur.capt=cur.raw
  )
  cum.len <- cumsum(abs(lines[, "len"]))
  cut.off <- -1L
  lines.omitted <- 0L
  lines.total <- max(0L, tail(cum.len, 1L))
  if(line.limit[[1L]] < 0L) {
    cut.off <- max(0L, cum.len)
  } else if(any(cum.len > line.limit[[1L]])) {
    cut.off <- max(0L, cum.len[cum.len <= line.limit[[2L]]])
  }
  if(cut.off > 0) {
    lines.omitted <- lines.total - cut.off
    cut.dat <- lines[max(which(cum.len <= cut.off)), ]
    grp.cut <- cut.dat[["grp.id"]]
    hunk.cut <- cut.dat[["hunk.id"]]
    line.cut <- cut.dat[["line.id"]]
    line.neg <- cut.dat[["len"]] < 0

    # completely trim hunks that will not be shown

    grps.to.cut <- setdiff(seq_along(hunk.grps), seq_len(grp.cut))
    for(i in grps.to.cut) hunk.grps[[i]] <- empty_hunk_grp(hunk.grps[[i]])

    hunk.grps.used <- grp.cut
    hunk.grps.omitted <- max(0L, hunk.grps.count - grp.cut)

    # Remove excess lines from the atomic hunks based on the limits; we don't
    # update the ranges as those should still indicate what the original
    # untrimmed range was

    # special case for first hunk in group since we need to account for hunk
    # header that takes up a line; this is not ideal, hunk header should be
    # made part of hunks eventually

    if(mode == "context") {
      # Context tricky because every atomic hunk B data is displayed after all
      # the A data

      for(i in seq_along(hunk.grps[[grp.cut]])) {
        hunk.atom <- hunk.grps[[grp.cut]][[i]]
        if(!line.neg) {  # means all B blocks must be dropped
          hunk.atom <- trim_hunk(hunk.atom, "cur", 0L)
          if(i > hunk.cut) {
            hunk.atom <- trim_hunk(hunk.atom, "tar", 0L)
          } else if (i == hunk.cut) {
            hunk.atom <- trim_hunk(hunk.atom, "tar", line.cut)
          }
        } else {
          if(i > hunk.cut) {
            hunk.atom <- trim_hunk(hunk.atom, "cur", 0L)
          } else if (i == hunk.cut) {
            hunk.atom <- trim_hunk(hunk.atom, "cur", line.cut)
          }
        }
        hunk.grps[[grp.cut]][[i]] <- hunk.atom
      }
    } else {
      hunk.atom <- hunk.grps[[grp.cut]][[hunk.cut]]
      hunk.atom <- trim_hunk(hunk.atom, "tar", line.cut)
      if(mode == "unified") {
        # Need to share lines between tar and cur in unified mode
        line.cut <- max(
          0L, line.cut - if(any(hunk.atom$tar.rng))
            diff(hunk.atom$tar.rng) + 1L else 0L
        )
      }
      hunk.atom <- trim_hunk(hunk.atom, "cur", line.cut)
      hunk.grps[[grp.cut]][[hunk.cut]] <- hunk.atom
      null.hunks <- seq_len(length(hunk.grps[[grp.cut]]) - hunk.cut) + hunk.cut
      hunk.grps[[grp.cut]][null.hunks] <- lapply(

        hunk.grps[[grp.cut]][null.hunks],
        function(h.a) {
          h.a <- trim_hunk(h.a, "cur", 0L)
          h.a <- trim_hunk(h.a, "tar", 0L)
          h.a
    } ) }
  } else if (!cut.off && length(cum.len)) {
    lines.omitted <- lines.total
    hunk.grps.omitted <- hunk.grps.count

    for(i in seq_along(hunk.grps))
      hunk.grps[[i]] <- empty_hunk_grp(hunk.grps[[i]])
  }
  diffs.trim <- count_diffs(hunk.grps)
  attr(hunk.grps, "meta") <- list(
    lines=as.integer(c(lines.omitted, lines.total)),
    hunks=as.integer(c(hunk.grps.omitted, hunk.grps.count)),
    diffs=as.integer(c(diffs.orig - diffs.trim, diffs.orig))
  )
  hunk.grps
}
# Helper fun

line_count <- function(rng) if(rng[[1L]]) rng[[2L]] - rng[[1L]] + 1L else 0L

# Count how many "lines" of differences there are in the  hunks
#
# Counts original diff lines, not lines left after trim.  This is because
# we are checking for 'str' folding, and 'str' folding should only happen
# if the folded results fits fully within limit.
#
# param x should be a hunk group list

count_diffs <- function(x) {
  sum(
    vapply(
      unlist(x, recursive=FALSE),
      function(y)
        if(y$context) 0L else line_count(y$tar.rng) + line_count(y$cur.rng),
      integer(1L)
) ) }
# More detailed counting of differences; note that context counting is messed
# up b/c context's are duplicated around each hunk.  This is primarily used for
# the summary method

count_diffs_detail <- function(x) {
  x.flat <- unlist(x, recursive=FALSE)
  guides <- vapply(x.flat, "[[", logical(1L), "guide")
  vapply(
    x.flat[!guides],
    function(y)
      if(y$context) c(match=line_count(y$tar.rng), delete=0L, add=0L)
      else c(match=0L, delete=line_count(y$tar.rng), add=line_count(y$cur.rng)),
    integer(3L)
) }

count_diff_hunks <- function(x)
  sum(!vapply(unlist(x, recursive=FALSE), "[[", logical(1L), "context"))