1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
# Copyright (C) 2021 Brodie Gaslam
#
# This file is part of "diffobj - Diffs for R Objects"
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# Go to <https://www.r-project.org/Licenses/GPL-2> for a copy of the license.
# Used to initialize the word difference index lists; represents a non matching
# result for use with `regmatches`
.word.diff.atom <- -1L
attr(.word.diff.atom, "match.length") <- -1L
# Matches syntactically valid R variable names
.reg.r.ident <- "(?:\\.[[:alpha:]]|[[:alpha:]])[[:alnum:]_.]*"
# Helper function when lining up word in a word diff to the lines they came from
#
# This one used to be simple but grew out of control as we discovered corner
# cases; would be good to see if there is a better collapse algorithm that
# naturally handles the corner cases (note: we added general handling of the
# situation where many hunks share the same line, but have not yet removed
# specific handling for corner cases generated by that issue so there is
# redundant code in here).
#
# lines: is a list of what lines are in each hunk,
# cont: is a logical vector of same length as lines denoting whether a
# particular value in lines is context or diff
# hunk.diff: logical vector denoting if for the other object the hunk contains
# only differences (seemingly not used in the most recent algorithm)
#
# What do we do about lines that are fully context? These are flexible in as
# much as we can put them anyplace between the two diff hunks. We are trying to
# maximize overlapping context elements.
reassign_lines2 <- function(lines, cont, hunk.diff) {
# Find out what lines show up as duplicated
hunk.count <- length(cont)
hunk.len <- vapply(lines, length, integer(1L))
hunk.n <- seq_along(cont)
nums <- unlist(lines)
nums.l <- unlist(
lapply(seq_along(lines), function(x) rep(x, length(lines[[x]])))
)
nums.d <- unique(nums[duplicated(nums)])
# For each duplicated number, find range of hunks that contain it and remove
# it from inappropriate hunks / add it to proper ones
lines.p <- lines
for(n in nums.d) {
n.r <- range(nums.l[nums == n])
# If any of the non-empty hunks are diff hunks, remove line reference from
# every hunk except the first non-empty diff hunk, otherwise remove the
# reference from everything except the first non-empty matching hunk
b.w <- hunk.n >= n.r[[1L]] & hunk.n <= n.r[[2L]]
min.diff.h <- head(which(!cont & b.w & hunk.len), 1L)
min.mtch.h <- head(which(cont & b.w & hunk.len), 1L)
keep.h <- if(length(min.diff.h)) min.diff.h else min.mtch.h
if(length(keep.h))
for(i in n.r[[1L]]:n.r[[2L]])
if(i != keep.h) lines.p[[i]] <- lines.p[[i]][lines.p[[i]] != n]
}
lines.p
}
## Helper Function for Mapping Word Diffs to Lines
##
## Used when we're doing a wrapped diff for atomic vectors. We expect to
## receive `tar/cur.dat` with any meta data lines (e.g. factor levels, time
## series meta data) removed already. The challenge is we need to then be able
## to re-map back each word back to the line it was on originally before
## unwrapping. This may include adding padding line blanks in the case one hunk
## displays across more lines than another.
#
## This function does two things: inserts padding lines when hunks in one object
## end up longer than in the other and similar lines don't align, and computes
## mock character strings that will be used by to force alignments. We
## manufacture unique strings that either match or don't match across the two
## objects depending on the word contents of each line, and then pass those
## back as the `comp` component of the `tar.dat` and `cur.dat` returned. The
## subsequent line diff will use `comp` and cause the relevant lines to be lined
## up. This is inefficient and round-about, but has the huge benefit of
## allowing us to plug in the wrapped diff into our existing line diff
## infrastructure
##
## Note that in "word" mode the returned values may be longer than the input ones
## as it may be necessary to add lines to get things to match-up. Added lines
## are indicated by TRUE values in the `fill` component of the `*.dat` return
## values
##
## We have been through several iterations trying to get the most intuitive
## behavior and the result is a fairly non-intuitive and likely inefficient
## algorithm. It works for the most part, so we leave it as is, but is long,
## messy, and should be replaced by a more elegant solution.
##
## @param tar.ends and cur.ends are the indices of the last elements in each
## line of the vector
## @param tar.dat and cur.dat are the data, see `line_diff` body for detailed
## description of them (about 100 lines in). Note that the data has been
## subset to just the portion of it that has row headers (e.g. excluding
## factor levels, etc.)
## @param tar/cur.ends the position in the unwrapped vector of the last "word"
## in each line.
word_to_line_map <- function(
hunks, tar.dat, cur.dat, tar.ends, cur.ends
) {
# Once we've done all the replication and disambiguation, we need to make sure
# diff hunks have the same number of lines. Start mix lines or start/end mix
# lines should go at beginning (this includes full "context" lines where there
# is an insertion or deletion in middle. End mix lines should go at end.
#
# For each hunk, we need to identify what lines it contains, and whether the
# lines are contained in full or not
#
# If a diff hunk is empty for tar/cur, and the corresponding cur/tar hunk
# does not begin/end at beginning of line, then must add lines containing
# adjoining elements to the diff
find_word_line <- function(h.i, pos, ends.a, ends.b, hunks) {
inds_pos <- function(h) c(h$A, h$B)[c(h$A, h$B) > 0L]
inds_neg <- function(h) abs(c(h$A, h$B)[c(h$A, h$B) < 0L])
h <- hunks[[h.i]]
h.prev <- if(h.i > 1L) hunks[[h.i - 1L]]
h.next <- if(h.i < length(hunks)) hunks[[h.i + 1L]]
inds.a <- if(pos) inds_pos(h) else inds_neg(h)
inds.b <- if(pos) inds_neg(h) else inds_pos(h)
ints.a <- c(1L, head(ends.a, -1L) + 1L)
ints.b <- c(1L, head(ends.b, -1L) + 1L)
ends.b.m <- max(ends.b)
# If a diff hunk and empty, but the matching hunk isn't empty, then add
# the last element of prior hunk and first element of next hunk
if(!h$context && !length(inds.a) && length(inds.b)) {
inds.prev <- if(h.i > 1L) if(pos) inds_pos(h.prev) else inds_neg(h.prev)
inds.next <- if(h.i < length(hunks))
if(pos) inds_pos(h.next) else inds_neg(h.next)
ind.b.min <- min(inds.b)
ind.b.max <- max(inds.b)
add.left <- if(!ind.b.min %in% ints.b) max(inds.prev)
add.right <- if(!ind.b.max %in% ends.b) min(inds.next)
inds.a <- if(length(add.left) && length(add.right))
seq(from=add.left, to=add.right, by=1L) else c(add.left, add.right)
}
sort(unique(findInterval(inds.a, ints.a)))
}
find_full_diff_line <- function(dat, ends, diffs) {
w.t <- vapply(
dat$word.ind,
function(x) if(is.null(a.val <- attr(x, "word.count"))) -1L else a.val,
integer(1L)
)
inds.d.l <- findInterval(diffs, c(1L, head(ends, -1L) + 1L))
inds.tab <- tabulate(inds.d.l, length(ends))
diff.full <- which(inds.tab == w.t & inds.tab)
}
h.seq <- seq_along(hunks)
tar.lines <- lapply(h.seq, find_word_line, TRUE, tar.ends, cur.ends, hunks)
cur.lines <- lapply(h.seq, find_word_line, FALSE, cur.ends, tar.ends, hunks)
# which hunks are context hunks?
h.cont <- vapply(hunks, "[[", logical(1L), "context")
# Compute what indices are in each lines; we are going to use this to
# categorize what type of line this is; some of this might be duplicative with
# what we did earlier, but that was so long ago I don't want to get back into
# it.
tar.idx <- Map(seq, c(1L, head(tar.ends, -1L) + 1L), tar.ends, by=1L)
cur.idx <- Map(seq, c(1L, head(cur.ends, -1L) + 1L), cur.ends, by=1L)
tar.diff <- unlist(
lapply(hunks[!h.cont], function(x) with(x, abs(c(A, B))[c(A, B) > 0]))
)
cur.diff <- unlist(
lapply(hunks[!h.cont], function(x) with(x, abs(c(A, B))[c(A, B) < 0]))
)
# identify whether a line starts with context, ends with context, neither, or
# both
context_type <- function(idx, diffs) {
idx.in <- idx %in% diffs
if(!length(idx)) { # arbitrarily assign this case to both
"both"
} else {
if(head(idx.in, 1L) && tail(idx.in, 1L)) {
"neither"
} else if(head(idx.in, 1L)) {
"ends"
} else if(tail(idx.in, 1L)) {
"starts"
} else {
"both"
}
}
}
tar.end.mix <- vapply(tar.idx, context_type, character(1L), diffs=tar.diff)
cur.end.mix <- vapply(cur.idx, context_type, character(1L), diffs=cur.diff)
# Handle cases where line is shared by multiple hunks; also need to know which
# hunks contain only lines that are fully different (and by extension, are
# themselves fully different) as these don't need to have a line from the
# opposite object brought in for alignment
diff.inds <- unlist(lapply(hunks[!h.cont], "[", c("A", "B")))
if(is.null(diff.inds)) diff.inds <- integer()
tar.inds.d <- diff.inds[diff.inds > 0]
cur.inds.d <- abs(diff.inds[diff.inds < 0])
tar.tot.diff.l <- find_full_diff_line(tar.dat, tar.ends, tar.inds.d)
cur.tot.diff.l <- find_full_diff_line(cur.dat, cur.ends, cur.inds.d)
# Remove duplicated line references
tar.lines.u <- reassign_lines2(tar.lines, h.cont)
cur.lines.u <- reassign_lines2(cur.lines, h.cont)
# Search for aligned matching hunks that are empty, and if both those have
# adjacent empty diff hunks, remove the matched and diff hunks from both
# NOTE: this changes the number of hunks in the word diff!
len.orig <- length(tar.lines.u)
tar.lines.p <- tar.lines.u
cur.lines.p <- cur.lines.u
j <- if(h.cont[[1L]]) 1L else 2L
l.cont <- as.list(h.cont)
k <- 0
while(j < length(tar.lines.p)) {
if((k <- k + 1L) > len.orig) {
# nocov start
stop("Logic Error: infine loop in atomic hunk align; contact maintainer.")
# nocov end
}
if(!length(tar.lines.p[[j]]) && !length(cur.lines.p[[j]])) {
if(j > 1L) {
tar.lo <- !length(tar.lines.p[[j - 1L]])
cur.lo <- !length(cur.lines.p[[j - 1L]])
} else tar.lo <- cur.lo <- FALSE
tar.hi <- !length(tar.lines.p[[j + 1L]])
cur.hi <- !length(cur.lines.p[[j + 1L]])
# Need to remove paired empty match and diff; since we are shortening the
# list we don't need to increment J (note possible memory inefficiency
# here)
if((tar.lo || tar.hi) && (cur.lo || cur.hi)) {
if(tar.lo) tar.lines.p[(j - 1L):j] <- NULL else
tar.lines.p[j:(j + 1L)] <- NULL
if(cur.lo) cur.lines.p[(j - 1L):j] <- NULL else
cur.lines.p[j:(j + 1L)] <- NULL
l.cont[j:(j + 1L)] <- NULL
} else {
j <- j + 1L
}
} else j <- j + 1L
}
# Update our context vector since we have now possibly removed hunks
h.cont <- unlist(l.cont)
# If necessary, populate empty diff hunks with matching lines; this happens
# if one of tar/cur has differences but the other doesn't
steal_matching_line <- function(lines, i) {
lines.p <- lines
l.len <- length(lines)
if(l.len > i && length(lines[[i + 1L]])) {
lines.p[[i]] <- head(lines.p[[i + 1L]], 1L)
lines.p[[i + 1L]] <- tail(lines.p[[i + 1L]], -1L)
} else if (i > 1L && length(lines[[i - 1L]])) {
lines.p[[i]] <- tail(lines.p[[i - 1L]], 1L)
lines.p[[i - 1L]] <- head(lines.p[[i - 1L]], -1L)
}
lines.p
}
tar.lines.f <- tar.lines.p
cur.lines.f <- cur.lines.p
# lines that are all diffs
hunk_diff <- function(vec, tot.diffs) length(vec) && all(vec %in% tot.diffs)
tar.tot.diff.h <- vapply(tar.lines, hunk_diff, logical(1L), tar.tot.diff.l)
cur.tot.diff.h <- vapply(cur.lines, hunk_diff, logical(1L), cur.tot.diff.l)
for(i in seq_along(h.cont)) {
if(!h.cont[[i]]) {
t.i <- tar.lines.f[[i]]
c.i <- cur.lines.f[[i]]
if(!length(t.i) && length(c.i) && !cur.tot.diff.h[[i]]) {
tar.lines.f <- steal_matching_line(tar.lines.f, i)
} else if (!length(c.i) && length(t.i) && !tar.tot.diff.h[[i]]) {
cur.lines.f <- steal_matching_line(cur.lines.f, i)
}
}
}
# We now need to make sure that every hunk is the same length
if(
length(tar.lines.f) != length(cur.lines.f) ||
length(tar.lines.f) != length(h.cont)
)
# nocov start
stop(
"Logic error: mismatched hunk sizes when aligning words to lines; ",
"contact maintainer."
)
# nocov end
tar.lines.f2 <- tar.lines.f
cur.lines.f2 <- cur.lines.f
# add padding vector as close to middle of input vector as possible, except
# in special cases (only one short line, or first or last hunks)
pad_in_middle <- function(vec, pad)
c(
head(vec, ceiling(length(vec) / 2)),
pad,
tail(vec, floor(length(vec) / 2))
)
for(i in seq_along(tar.lines.f)) {
if(length(tar.lines.f[[i]]) != length(cur.lines.f[[i]])) {
tar.long <- length(tar.lines.f[[i]]) > length(cur.lines.f[[i]])
long <- if(tar.long) tar.lines.f[[i]] else cur.lines.f[[i]]
short <- if(!tar.long) tar.lines.f[[i]] else cur.lines.f[[i]]
long.type <- if(tar.long) tar.end.mix[long] else cur.end.mix[long]
short.type <- if(!tar.long) tar.end.mix[short] else cur.end.mix[short]
pad <- rep(NA, length(long) - length(short))
short.pad <- if(i == 1L && length(tar.lines.f) > 1L) {
c(pad, short)
} else if (i == length(tar.lines.f)) {
c(short, pad)
} else if(h.cont[[i]] || length(short) != 1L) {
pad_in_middle(short, pad)
} else {
if(
short.type == "ends" && (long.type[[1L]] %in% c("ends", "neither"))
) {
c(pad, short)
} else c(short, pad)
}
if(tar.long) cur.lines.f2[[i]] <- short.pad
else tar.lines.f2[[i]] <- short.pad
} }
# Augment the input vectors by the blanks we added; these blanks are
# represented by NAs in our index vector.
augment <- function(dat, lines) {
lines.u <- unlist(lines)
lines.len <- length(lines.u)
for(i in names(dat)) {
i.vec <- vector(typeof(dat[[i]]), length(lines.u))
i.vec[!is.na(lines.u)] <- dat[[i]]
if(i == "word.ind") {
i.vec[is.na(lines.u)] <- list(.word.diff.atom)
} else if (i == "fill") {
# warning: this is also used/subverted for augmenting the original
# indices so think before you change it
i.vec[is.na(lines.u)] <- TRUE
}
dat[[i]] <- i.vec
}
dat
}
tar.dat.aug <- augment(tar.dat, tar.lines.f2)
cur.dat.aug <- augment(cur.dat, cur.lines.f2)
# Generate the final vectors to do the diffs on; these should be unique
# and matching for the matches, and unique and mismatching for the
# mismatches
hunk_match <- function(i, l) rep(h.cont[i], length(l[[i]]))
tar.match <- unlist(lapply(seq_along(h.cont), hunk_match, l=tar.lines.f2))
cur.match <- unlist(lapply(seq_along(h.cont), hunk_match, l=cur.lines.f2))
pos.nums <- sum(tar.match)
if(pos.nums != length(unlist(cur.lines.f2[h.cont]))) {
# nocov start
stop("Logic Error: pos nums incorrect; contact maintainer")
# nocov end
}
neg.nums <- sum(!tar.match, !cur.match)
strings <- make_unique_strings(
pos.nums + neg.nums, c(tar.dat.aug$raw, cur.dat.aug$raw)
)
strings.pos <- strings[seq.int(pos.nums)]
strings.neg <- tail(strings, neg.nums)
if(neg.nums + pos.nums != length(strings)) {
# nocov start
stop("Logic Error: num-string maping failed; contact maintainer")
# nocov end
}
tar.dat.aug$comp[tar.match] <- strings.pos
cur.dat.aug$comp[cur.match] <- strings.pos
tar.dat.aug$comp[!tar.match] <- head(strings.neg, sum(!tar.match))
cur.dat.aug$comp[!cur.match] <- tail(strings.neg, sum(!cur.match))
list(tar.dat=tar.dat.aug, cur.dat=cur.dat.aug)
}
# Pull out mismatching words from the word regexec; helper functions
reg_pull <- function(ind, reg) {
reg.out <- reg[ind]
attr(reg.out, "match.length") <- attr(reg, "match.length")[ind]
attr(reg.out, "useBytes") <- attr(reg, "useBytes")
attr(reg.out, "word.count") <- length(reg)
reg.out
}
# Generate the indices in each row and apply the pulling functions
# - reg list produced by `gregexpr` and such
# - ends length of each line in words
# - mismatch index of mismatching words
#
reg_apply <- function(reg, ends, mismatch) {
if(!length(reg)) {
reg
} else {
use.bytes <- attr(reg[[1L]], "useBytes") # assume useBytes value unchanging
regs.fin <- reg
buckets <- head(c(0L, ends) + 1L, -1L)
mism.lines <- findInterval(mismatch, buckets)
mism.lines.u <- unique(mism.lines)
mtch.lines.u <- which(!seq_along(ends) %in% mism.lines.u )
# These don't have any mismatches
attr(.word.diff.atom, "useBytes") <- use.bytes
regs.fin[mtch.lines.u] <-
replicate(length(mtch.lines.u), .word.diff.atom, simplify=FALSE)
# These do have mismatches, we need to split them up in list elements and
# substract the starting index to identify position within each sub-list
if(length(mism.lines.u)) {
inds.msm <- Map(
"-", unname(split(mismatch, mism.lines)), buckets[mism.lines.u] - 1L
)
regs.fin[mism.lines.u] <- Map(reg_pull, inds.msm, reg[mism.lines.u])
}
regs.fin
}
}
# Modify `tar.dat` and `cur.dat` by generating `regmatches` indices for the
# words that are different
#
# If `diff.mode` is "wrap", then wrapped atomic vector output is unwrapped and
# the diff is carried out in the unwrapped form, and then re-assembled. See
# `word_to_line_map` for details in how its done. Return values may be longer
# than input in this mode.
#
# `match.quotes` will make "words" starting and ending with quotes; it should
# only be used with atomic character vectors or possibly deparsed objects.
diff_word2 <- function(
tar.dat, cur.dat, tar.ind, cur.ind, etc, match.quotes=FALSE, diff.mode,
warn=TRUE
) {
stopifnot(
is.TF(match.quotes), is.TF(warn)
# isTRUE(valid_dat(tar.dat)), isTRUE(valid_dat(cur.dat)) # too expensive
)
# Compute the char by char diffs for each line
reg <- paste0(
# grab leading spaces for each word; these will be stripped before actual
# word diff, but we want them to be part of mismatch so they are removed
# when we construct the equal strings as that allows better matching b/w
# strings with differences removed; could do trailing spaces instead
"\\s*(?:",
# Some attempt at matching R identifiers; note we explicitly chose not to
# match `.` or `..`, etc, since those could easily be punctuation
sprintf("%s|", .reg.r.ident),
# Not whitespaces that doesn't include quotes
"[^ \"]+|",
# Quoted phrases as structured in atomic character vectors
if(match.quotes) "(?:(?<= )|(?<=^))\"(?:[^\"]|\\\")*?\"(?:(?= )|(?=$))|",
# Other quoted phrases we might see in expressions or deparsed chr vecs,
# this is a bit lazy currently b/c we're not forcing precise matching b/w
# starting and ending delimiters
"(?:(?<=[ ([,{])|(?<=^))\"(?:[^\"]|\\\"|\"(?=[^ ]))*?",
"\"(?:(?=[ ,)\\]}])|(?=$))|",
# Other otherwise 'illegal' quotes that couldn't be matched to one of the
# known valid quote structures
"\")"
)
tar.chr <- tar.dat$trim[tar.ind]
cur.chr <- cur.dat$trim[cur.ind]
tar.reg <- gregexpr(reg, tar.chr, perl=TRUE)
cur.reg <- gregexpr(reg, cur.chr, perl=TRUE)
tar.split <- regmatches(tar.chr, tar.reg)
cur.split <- regmatches(cur.chr, cur.reg)
# Collapse into one line if to do the diff across lines, but record
# item counts so we can reconstitute the lines at the end
tar.lens <- vapply(tar.split, length, integer(1L))
cur.lens <- vapply(cur.split, length, integer(1L))
tar.unsplit <- unlist(tar.split)
cur.unsplit <- unlist(cur.split)
if(is.null(tar.unsplit)) tar.unsplit <- character(0L)
if(is.null(cur.unsplit)) cur.unsplit <- character(0L)
# Remove the leading spaces we grabbed for each word
tar.unsplit <- trimws(tar.unsplit, "left")
cur.unsplit <- trimws(cur.unsplit, "left")
# Run the word diff as a line diff configured in a manner compatible for the
# word diff
etc@line.limit <- etc@hunk.limit <- etc@context <- -1L
etc@mode <- "context"
diffs <- char_diff(
tar.unsplit, cur.unsplit, etc=etc, diff.mode=diff.mode, warn=warn
)
# Need to figure out which elements match, and which ones do not
hunks.flat <- diffs$hunks
tar.mism <- unlist(
lapply(hunks.flat, function(x) if(!x$context) x$A else integer(0L))
)
cur.mism <- abs(
unlist(lapply(hunks.flat, function(x) if(!x$context) x$B else integer(0L)))
)
# Figure out which line each of these elements came from, and what index
# in each of those lines they are; we use the recorded lengths in words of
# each line to reconstruct this; also record original line length so we
# can compute token ratios
tar.ends <- cumsum(tar.lens)
cur.ends <- cumsum(cur.lens)
tar.dat$word.ind[tar.ind] <- reg_apply(tar.reg, tar.ends, tar.mism)
cur.dat$word.ind[cur.ind] <- reg_apply(cur.reg, cur.ends, cur.mism)
# If in wrap mode (which is really atomic mode), generate a spoofed
# `comp` vector (see word_to_line_map)
#
# Note that we're only operating on a subset of the data via tar.ind and
# cur.ind, these are supposed to be the contiguous block of lines that have
# row headers.
tar.dat.fin <- tar.dat
cur.dat.fin <- cur.dat
if(diff.mode == "wrap") {
tar.dat.ind <- lapply(tar.dat, '[', tar.ind)
cur.dat.ind <- lapply(cur.dat, '[', cur.ind)
word.line.mapped <- word_to_line_map(
hunks.flat, tar.dat.ind, cur.dat.ind, tar.ends, cur.ends
)
# Merge back the mapped data, need to account for possiblity of padding
# lines being added.
tar.len.old <- length(tar.dat[[1L]])
cur.len.old <- length(cur.dat[[1L]])
tar.ind.lo <- seq_len(head(tar.ind, 1L) - 1L)
tar.ind.hi <- seq_len(tar.len.old - tail(tar.ind, 1L)) + tail(tar.ind, 1L)
cur.ind.lo <- seq_len(head(cur.ind, 1L) - 1L)
cur.ind.hi <- seq_len(cur.len.old - tail(cur.ind, 1L)) + tail(cur.ind, 1L)
interleave <- function(idx, new, old, lo, hi)
c(old[[idx]][lo], new[[idx]], old[[idx]][hi])
tar.dat.fin <- setNames(
lapply(
seq_along(tar.dat), interleave,
new=word.line.mapped[['tar.dat']], old=tar.dat,
lo=tar.ind.lo, hi=tar.ind.hi
),
names(tar.dat)
)
cur.dat.fin <- setNames(
lapply(
seq_along(cur.dat), interleave,
new=word.line.mapped[['cur.dat']], old=cur.dat,
lo=cur.ind.lo, hi=cur.ind.hi
),
names(cur.dat)
)
}
list(
tar.dat=tar.dat.fin, cur.dat=cur.dat.fin, hit.diffs.max=diffs$hit.diffs.max
)
}
# Make unique strings
#
# Makes gibberish strings that are 16 characters long, are unique, and don't
# overlap with `invalid`. This allows us to generate strings we can use to
# cause a specific diff outcome.
#
# n: how long the character vector should be
# invalid: what values cannot be contained in the returned values
make_unique_strings <- function(n, invalid) {
pool <- c(
letters, LETTERS, 0:9, "_", ".", "*", "+", "-", "=", "(", ")", "{",
"}", "~", "`", "!", "@", "#", "$", "%", "^", "&", ";", ":", "<", ">", "?",
",", "/"
)
cols <- 16 # use 16 character samples, should be more than big enough
dat <- matrix("", ncol=16, nrow=n)
rows <- 1:n
safety <- 0
repeat {
dat[rows, ] <-
matrix(sample(pool, cols * length(rows), replace=TRUE), ncol=cols)
dat.chr <- do.call(paste0, split(dat, col(dat)))
rows <- which(duplicated(dat.chr) | dat.chr %in% invalid)
if(!length(rows)) break
# nocov start
if(safety <- safety + 1 > 100)
stop(
"Logic Error: unable to generate unique strings; this should be ",
"incredibly rare as we are sampling from 10^31 elements, so try ",
"again and if it happens again contact maintainer"
)
# nocov end
}
dat.chr
}
# Add word diff highlighting
word_color <- function(txt, inds, fun) {
word.list <- regmatches(txt, inds)
word.lens <- vapply(word.list, length, integer(1L))
# remove leading space before coloring
words.u <- if(length(word.list)) unlist(word.list) else character(0L)
words.u.trim.ind <- regexpr("\\S.*", words.u)
words.u.trim <- regmatches(words.u, words.u.trim.ind)
# color and re-insert back into space
words.c.trim <- fun(words.u.trim)
regmatches(words.u, words.u.trim.ind) <- words.c.trim
# split back into original lines
words.res <- vector("list", length(word.list))
words.res[!!word.lens] <- split(
words.u, rep(seq_along(word.lens), times=word.lens)
)
words.res[!word.lens] <- list(character(0L))
regmatches(txt, inds) <- words.res
txt
}
|