1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
NAME <- "atomic"
source(file.path('_helper', 'init.R'))
# - Basic Tests
all.equal(as.character(diffPrint(chr.1, chr.2)), rdsf(100))
all.equal(
as.character(diffPrint(chr.1, chr.2, mode="unified")), rdsf(200)
)
all.equal(
as.character(diffPrint(chr.1, chr.2, mode="context")), rdsf(400)
)
all.equal(
as.character(diffPrint(chr.1[2:3], chr.2[2], mode="sidebyside")), rdsf(500)
)
# Check that `extra` works
all.equal(
as.character(
diffPrint(chr.1, chr.2, mode="unified", extra=list(quote=FALSE))
),
rdsf(600)
)
# make sure blanks line up correctly
all.equal(
as.character(diffPrint(chr.3, chr.4)), rdsf(700)
)
all.equal(
as.character(diffPrint(chr.3, chr.4, mode="unified")), rdsf(800)
)
# - Word wrap in atomic
A <- A.1 <- B <- c(letters, LETTERS)
B[15] <- "Alabama"
A.1[5] <- "Ee"
C <- A[-15]
D <- C
E <- B[-45]
# Test simple changes to vectors; at 80 columns removing 1:8 corresponds to
# row deletion
all.equal(as.character(diffPrint(A[-(1:8)], A)), rdsf(900))
all.equal(as.character(diffPrint(A, A[-(1:8)])), rdsf(1000))
all.equal(as.character(diffPrint(A[-1], A[-2])), rdsf(1100))
# Replace single word
all.equal(as.character(diffPrint(A, B)), rdsf(1200))
all.equal(as.character(diffPrint(B, A)), rdsf(1250))
# Make sure turning off word.diff also turns of unwrapping, but that we can
# turn off unwrapping without turning off word diff
all.equal(
as.character(diffPrint(A, B, word.diff=FALSE)), rdsf(1300)
)
all.equal(
as.character(diffPrint(A, B, unwrap.atomic=FALSE)), rdsf(1400)
)
# Different wrap frequency and removed words that span lines
all.equal(
as.character(diffPrint(A, A.1[-(13:18)])), rdsf(1425)
)
# Removing words
all.equal(as.character(diffPrint(C, B)), rdsf(1450))
# Two hunks
all.equal(as.character(diffPrint(D, E)), rdsf(1500))
all.equal(as.character(diffPrint(E, D)), rdsf(1600))
# Vignette example
state.abb.2 <- state.abb
state.abb.2[38] <- "Pennsylvania"
all.equal(
as.character(diffPrint(state.abb, state.abb.2)), rdsf(1700)
)
# Number corner cases
all.equal(as.character(diffPrint(1:100, 2:101)), rdsf(1800))
all.equal(as.character(diffPrint(2:101, 1:100)), rdsf(1900))
all.equal(
as.character(diffPrint(2:101, (1:100)[-9])), rdsf(2000)
)
all.equal(
as.character(diffPrint((2:101)[-98], (1:100)[-9])), rdsf(2100)
)
# This is one of those that a better in-hunk align algorithm would benefit
int.1 <- int.2 <- 1:100
int.2[c(8, 20, 60)] <- 99
int.2 <- c(50:1, int.2)
all.equal(as.character(diffPrint(int.1, int.2)), rdsf(2200))
# - with names
rand.chrs <- do.call(paste0, expand.grid(LETTERS, LETTERS))
F <- F1 <- F2 <- (2:105)[-98]
G <- G2 <- G3 <- G4 <- G5 <- (1:100)[-9]
nm.1 <- rand.chrs[seq_along(F)]
nm.2 <- rand.chrs[seq_along(G)]
names(F1) <- names(F2) <- nm.1
names(G3) <- names(G2) <- names(G3) <- names(G4) <- names(G5) <- nm.2
names(G3)[c(5, 25, 60)] <- c("XXXXX", rand.chrs[c(300, 350)])
names(G4)[c(5, 25, 60)] <- names(G5)[c(5, 25, 60)] <-
c("XX", rand.chrs[c(300, 350)])
attr(F2, "blah") <- 1:5
attr(G5, "blah") <- 3:8
all.equal(as.character(diffPrint(F, G)), rdsf(2300))
all.equal(as.character(diffPrint(F1, G2)), rdsf(2400))
# Challenging case b/c the names wrap with values, and you have to pick one or
# the other to match when the wrap frequencies are different
all.equal(as.character(diffPrint(F1, G3)), rdsf(2500))
all.equal(as.character(diffPrint(F1, G4)), rdsf(2520))
# Attributes
all.equal(as.character(diffPrint(F2, G5)), rdsf(2530))
all.equal(as.character(diffPrint(F1, G5)), rdsf(2540))
# - Original tests
set.seed(2)
w1 <- sample(
c(
"carrot", "cat", "cake", "eat", "rabbit", "holes", "the", "a", "pasta",
"boom", "noon", "sky", "hat", "blah", "paris", "dog", "snake"
), 25, replace=TRUE
)
w4 <- w3 <- w2 <- w1
w2[sample(seq_along(w1), 5)] <- LETTERS[1:5]
w3 <- w1[8:15]
w4 <- c(w1[1:5], toupper(w1[1:5]), w1[6:15], toupper(w1[1:5]))
all.equal(as.character(diffPrint(w1, w2)), rdsf(2600))
all.equal(as.character(diffPrint(w1, w3)), rdsf(2700))
all.equal(as.character(diffPrint(w1, w4)), rdsf(2800))
# - Simple word diffs
a <- c("a", "b", "c", "d")
b <- c("b", "c", "d", "e")
all.equal(as.character(diffPrint(a, b)), rdsf(2900))
a <- c("x", "a", "b", "c", "d", "z")
b <- c("x", "b", "c", "d", "e", "z")
all.equal(as.character(diffPrint(a, b)), rdsf(3000))
a <- c("x", "a", "b", "c", "d", "z")
b <- c("z", "b", "c", "d", "e", "x")
all.equal(as.character(diffPrint(a, b)), rdsf(3100))
# - Alignment edge cases
all.equal(
as.character(diffPrint(20:50, 30:62)), rdsf(3200)
)
# below is off; should be aligning matching context line, part of the problem
# might be that we're doing the realignment without thinking about what the
# other hunk has.
#
# Possible encode each line as hunk#:diff/mix/cont
# all.equal(
# as.character(diffPrint(20:50, 35:62)), rdsf(3300)
# )
# another interesting example where the existing algo seems to lead to a
# reasonable outcome
all.equal(
as.character(diffPrint(c(1:24,35:45), c(1:8, 17:45))), rdsf(3400)
)
|