1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
NAME <- "ses"
source(file.path('_helper', 'init.R'))
# Any tests added here should also be added to the valgrind test file
# - basic ----------------------------------------------------------------------
all.equal(ses(letters[1:10], letters[1:10]), character())
all.equal(ses(letters[1:10], LETTERS[1:10]), "1,10c1,10")
all.equal(ses(letters[1:5], LETTERS[1:10]), "1,5c1,10")
all.equal(ses(letters[1:10], LETTERS[1:5]), "1,10c1,5")
all.equal(ses(letters[2:10], letters[1:7]), c("0a1", "7,9d7"))
all.equal(
ses(letters[c(1:5, 1:5, 1:5)], c("e", "d", "a", "b", "c")),
c("1,4d0", "6,8d1", "10d2", "14,15d5")
)
all.equal(
ses(c("e", "d", "a", "b", "c"), letters[c(1:5, 1:5, 1:5)]),
c("0a1,4", "1a6,8", "2a10", "5a14,15")
)
# edit distance = 1
# - trigger edit distance 1 branches -------------------------------------------
all.equal(ses("a", c("a", "b")), "1a2")
all.equal(ses(c("a", "b"), "a"), "2d1")
all.equal(ses("c", c("b", "c")), "0a1")
all.equal(ses(c("b", "c"), "c"), "1d0")
all.equal(ses("a", character()), "1d0")
all.equal(ses(character(), "a"), "0a1")
all.equal(ses(character(), character()), character())
## this is from the atomic tests, haven't dug into why they actually trigger
## the desired branches, but it is fairly complex
set.seed(2)
w1 <- sample(
c(
"carrot", "cat", "cake", "eat", "rabbit", "holes", "the", "a", "pasta",
"boom", "noon", "sky", "hat", "blah", "paris", "dog", "snake"
), 25, replace=TRUE
)
w4 <- w3 <- w2 <- w1
w2[sample(seq_along(w1), 5)] <- LETTERS[1:5]
w3 <- w1[8:15]
w4 <- c(w1[1:5], toupper(w1[1:5]), w1[6:15], toupper(w1[1:5]))
all.equal(ses(w1, w4), c("5a6,10", "15,21d19", "23,25c21,25"))
# - longer strings -------------------------------------------------------------
# A bigger string
string <- do.call(paste0, expand.grid(LETTERS, LETTERS, LETTERS))
all.equal(
ses(string, c("hello", string[-c(5, 500, 1000)], "goodbye")),
c("0a1", "5d5", "500d499", "1000d998", "17576a17575")
)
all.equal(
ses(c(string[200:500], "hello", string[-(1:400)][-c(5, 500, 1000)]), string),
c("0a1,199", "207,306d405", "800a900", "1299a1400")
)
# - max diffs ------------------------------------------------------------------
ses(letters[1:10], LETTERS[1:10], max.diffs=5) # "Exceeded `max.diffs`"
all.equal(
ses(letters[1:10], LETTERS[1:10], max.diffs=5, warn=FALSE),
"1,10c1,10"
)
all.equal(
ses(
letters[1:10],
c(letters[1], LETTERS[2:5], letters[6:10]), max.diffs=5, warn=FALSE
),
"2,5c2,5"
)
all.equal(
ses(
letters[1:10],
c(letters[1], LETTERS[2:5], letters[6:8], LETTERS[9], letters[10]),
max.diffs=5, warn=FALSE
),
c("2,5c2,5", "9c9")
)
# - Issue 152 --------------------------------------------------------------
# h/t @hadley, used to error, now warns
all.equal(ses(letters[1:4], letters[1:3]), "4d3")
all.equal(ses(letters[1:3], letters[1:4]), "3a4")
ses(1, 2:9, max.diffs = 8)
# h/t @gadenbui, data is extracted from palmerpenguins@0.1.0::penguins
#
# comparison <- subset(penguins, year == 2007 | flipper_length_mm > 220)
# test <- subset(penguins, year == 2008)
# a <- test$bill_length_mm
# b <- comparison$bill_length_mm
a <- c(39.6, 40.1, 35, 42, 34.5, 41.4, 39, 40.6, 36.5, 37.6, 35.7,
41.3, 37.6, 41.1, 36.4, 41.6, 35.5, 41.1, 35.9, 41.8, 33.5, 39.7,
39.6, 45.8, 35.5, 42.8, 40.9, 37.2, 36.2, 42.1, 34.6, 42.9, 36.7,
35.1, 37.3, 41.3, 36.3, 36.9, 38.3, 38.9, 35.7, 41.1, 34, 39.6,
36.2, 40.8, 38.1, 40.3, 33.1, 43.2, 49.1, 48.4, 42.6, 44.4, 44,
48.7, 42.7, 49.6, 45.3, 49.6, 50.5, 43.6, 45.5, 50.5, 44.9, 45.2,
46.6, 48.5, 45.1, 50.1, 46.5, 45, 43.8, 45.5, 43.2, 50.4, 45.3,
46.2, 45.7, 54.3, 45.8, 49.8, 46.2, 49.5, 43.5, 50.7, 47.7, 46.4,
48.2, 46.5, 46.4, 48.6, 47.5, 51.1, 45.2, 45.2, 50.5, 49.5, 46.4,
52.8, 40.9, 54.2, 42.5, 51, 49.7, 47.5, 47.6, 52, 46.9, 53.5,
49, 46.2, 50.9, 45.5)
b <- c(39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, 42, 37.8,
37.8, 41.1, 38.6, 34.6, 36.6, 38.7, 42.5, 34.4, 46, 37.8, 37.7,
35.9, 38.2, 38.8, 35.3, 40.6, 40.5, 37.9, 40.5, 39.5, 37.2, 39.5,
40.9, 36.4, 39.2, 38.8, 42.2, 37.6, 39.8, 36.5, 40.8, 36, 44.1,
37, 39.6, 41.1, 37.5, 36, 42.3, 46.1, 50, 48.7, 50, 47.6, 46.5,
45.4, 46.7, 43.3, 46.8, 40.9, 49, 45.5, 48.4, 45.8, 49.3, 42,
49.2, 46.2, 48.7, 50.2, 45.1, 46.5, 46.3, 42.9, 46.1, 44.5, 47.8,
48.2, 50, 47.3, 42.8, 45.1, 59.6, 49.6, 50.5, 50.5, 50.1, 50.4,
46.2, 54.3, 49.8, 49.5, 50.7, 46.4, 48.2, 48.6, 45.2, 52.5, 50,
50.8, 52.1, 52.2, 49.5, 50.8, 46.9, 51.1, 55.9, 49.1, 49.8, 51.5,
55.1, 48.8, 50.4, 46.5, 50, 51.3, 45.4, 52.7, 45.2, 46.1, 51.3,
46, 51.3, 46.6, 51.7, 47, 52, 45.9, 50.5, 50.3, 58, 46.4, 49.2,
42.4, 48.5, 43.2, 50.6, 46.7, 52)
# In <0.3.4: Exceeded buffer for finding fake snake
ses(a[-c(15:38, 50:90)], b[-c(40:85, 100:125)], max.diffs=80)
# In <0.3.4: Faux Snake Process Failed
ses(a[-(18:38)], b[-(50:80)], max.diffs=115)
# - issue 157 ------------------------------------------------------------------
# Arguably could match on 'A' instead of 'X' and be more compact
a <- c('a', 'b', 'c', 'A', 'X', 'Y', 'Z', 'W')
b <- c('X', 'C', 'A', 'U', 1, 2, 3)
ses(a, b, max.diffs=13)
# segfault (but may have beend debugging code)
ses(letters[1:2], LETTERS[1:2], max.diffs = 4)
# snake overrun
ses(c("G", "C", "T", "C", "A", "C", "G", "C"), c("T", "G"), max.diffs=2)
# effect of max.diffs on compactness (waldo logical comparison)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=0)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=1)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=2)
# back snake all matches before faux snake triggered
ses_dat(
a=c("T", "A", "A", "C", "C", "A"),
b=c("A", "G", "A", "A"), max.diffs = 0
)
# - errors ---------------------------------------------------------------------
try(ses('a', 'b', max.diffs='hello')) # "must be scalar integer"
try(ses('a', 'b', warn='hello')) # "must be TRUE or FALSE"
a <- structure(1, class='diffobj_ogewlhgiadfl2')
try(ses(a, 1)) # "could not be coerced")
try(ses(1, a)) # "could not be coerced"
# We want to have a test file that fully covers the C code in order to run
# valgrind with just that one. We were unable to isolate simple diffs that
# triggered all the code, but we were able to do it with the below in addition
# to the above.
# - Repeat tests for full coverage in SES file ---------------------------------
# From test.diffStr.R
# formula display changed
if(
R.Version()$major >= 3 && R.Version()$minor >= "3.1" ||
R.Version()$major >= 4) {
rdsf1 <- function(x)
readRDS(file.path("_helper", "objs", "diffStr", sprintf("%s.rds", x)))
all.equal(
as.character(
diffStr(mdl1, mdl2, extra=list(strict.width="wrap"), line.limit=30)
),
rdsf1(500)
)
}
# from testthat.warnings.R
A3 <- c("a b c", "d e f A B C D", "g h i", "f")
B3 <- c("a b c", "xd e f E Q L S", "g h i", "q")
diffChr(A3, B3, max.diffs=2) # warn: "Exceeded diff"
# - ses_dat --------------------------------------------------------------------
a <- b <- do.call(paste0, expand.grid(LETTERS, LETTERS))
set.seed(2)
b <- b[-sample(length(b), 100)]
a <- a[-sample(length(b), 100)]
dat <- ses_dat(a, b)
all.equal(dat[['val']][dat[['op']] != 'Delete'], b)
all.equal(dat[['val']][dat[['op']] != 'Insert'], a)
all.equal(a[dat[['id.a']][!is.na(dat[['id.a']])]], a)
dat2 <- ses_dat(a, b, extra=FALSE)
all.equal(dat[1:2], dat2)
all.equal(length(dat2), 2L)
try(ses_dat(a, b, extra=NA)) # 'TRUE or FALSE'
# - encoding agnostic #144 -----------------------------------------------------
# h/t @hadley, these are different in string cache, but should compare equal
# as per ?identical
x <- c("fa\xE7ile", "fa\ue7ile")
Encoding(x) <- c("latin1", "UTF-8")
y <- rev(x)
all.equal(diffobj::ses(x, y), character())
|