File: test-ses.R

package info (click to toggle)
r-cran-diffobj 0.3.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,432 kB
  • sloc: ansic: 455; javascript: 96; sh: 32; makefile: 8
file content (218 lines) | stat: -rwxr-xr-x 7,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
NAME <- "ses"
source(file.path('_helper', 'init.R'))

# Any tests added here should also be added to the valgrind test file

# - basic ----------------------------------------------------------------------

all.equal(ses(letters[1:10], letters[1:10]), character())
all.equal(ses(letters[1:10], LETTERS[1:10]), "1,10c1,10")
all.equal(ses(letters[1:5], LETTERS[1:10]), "1,5c1,10")
all.equal(ses(letters[1:10], LETTERS[1:5]), "1,10c1,5")
all.equal(ses(letters[2:10], letters[1:7]), c("0a1", "7,9d7"))
all.equal(
  ses(letters[c(1:5, 1:5, 1:5)], c("e", "d", "a", "b", "c")),
  c("1,4d0", "6,8d1", "10d2", "14,15d5")
)
all.equal(
  ses(c("e", "d", "a", "b", "c"), letters[c(1:5, 1:5, 1:5)]),
  c("0a1,4", "1a6,8", "2a10", "5a14,15")
)
# edit distance = 1

# - trigger edit distance 1 branches -------------------------------------------

all.equal(ses("a", c("a", "b")), "1a2")
all.equal(ses(c("a", "b"), "a"), "2d1")
all.equal(ses("c", c("b", "c")), "0a1")
all.equal(ses(c("b", "c"), "c"), "1d0")

all.equal(ses("a", character()), "1d0")
all.equal(ses(character(), "a"), "0a1")
all.equal(ses(character(), character()), character())

## this is from the atomic tests, haven't dug into why they actually trigger
## the desired branches, but it is fairly complex
set.seed(2)
w1 <- sample(
  c(
  "carrot", "cat", "cake", "eat", "rabbit", "holes", "the", "a", "pasta",
  "boom", "noon", "sky", "hat", "blah", "paris", "dog", "snake"
  ), 25, replace=TRUE
)
w4 <- w3 <- w2 <- w1
w2[sample(seq_along(w1), 5)] <- LETTERS[1:5]
w3 <- w1[8:15]
w4 <- c(w1[1:5], toupper(w1[1:5]), w1[6:15], toupper(w1[1:5]))

all.equal(ses(w1, w4), c("5a6,10", "15,21d19", "23,25c21,25"))

# - longer strings -------------------------------------------------------------

# A bigger string

string <- do.call(paste0, expand.grid(LETTERS, LETTERS, LETTERS))

all.equal(
  ses(string, c("hello", string[-c(5, 500, 1000)], "goodbye")),
  c("0a1", "5d5", "500d499", "1000d998", "17576a17575")
)
all.equal(
  ses(c(string[200:500], "hello", string[-(1:400)][-c(5, 500, 1000)]), string),
  c("0a1,199", "207,306d405", "800a900", "1299a1400")
)

# - max diffs ------------------------------------------------------------------

ses(letters[1:10], LETTERS[1:10], max.diffs=5) # "Exceeded `max.diffs`"
all.equal(
  ses(letters[1:10], LETTERS[1:10], max.diffs=5, warn=FALSE),
  "1,10c1,10"
)
all.equal(
  ses(
    letters[1:10],
    c(letters[1], LETTERS[2:5], letters[6:10]), max.diffs=5, warn=FALSE
  ),
  "2,5c2,5"
)
all.equal(
  ses(
    letters[1:10],
    c(letters[1], LETTERS[2:5], letters[6:8], LETTERS[9], letters[10]),
    max.diffs=5, warn=FALSE
  ),
  c("2,5c2,5", "9c9")
)
# - Issue 152 --------------------------------------------------------------

# h/t @hadley, used to error, now warns

all.equal(ses(letters[1:4], letters[1:3]), "4d3")
all.equal(ses(letters[1:3], letters[1:4]), "3a4")
ses(1, 2:9, max.diffs = 8)

# h/t @gadenbui, data is extracted from palmerpenguins@0.1.0::penguins
#
# comparison <- subset(penguins, year == 2007 | flipper_length_mm > 220)
# test <- subset(penguins, year == 2008)
# a <- test$bill_length_mm
# b <- comparison$bill_length_mm

a <- c(39.6, 40.1, 35, 42, 34.5, 41.4, 39, 40.6, 36.5, 37.6, 35.7, 
41.3, 37.6, 41.1, 36.4, 41.6, 35.5, 41.1, 35.9, 41.8, 33.5, 39.7, 
39.6, 45.8, 35.5, 42.8, 40.9, 37.2, 36.2, 42.1, 34.6, 42.9, 36.7, 
35.1, 37.3, 41.3, 36.3, 36.9, 38.3, 38.9, 35.7, 41.1, 34, 39.6, 
36.2, 40.8, 38.1, 40.3, 33.1, 43.2, 49.1, 48.4, 42.6, 44.4, 44, 
48.7, 42.7, 49.6, 45.3, 49.6, 50.5, 43.6, 45.5, 50.5, 44.9, 45.2, 
46.6, 48.5, 45.1, 50.1, 46.5, 45, 43.8, 45.5, 43.2, 50.4, 45.3, 
46.2, 45.7, 54.3, 45.8, 49.8, 46.2, 49.5, 43.5, 50.7, 47.7, 46.4, 
48.2, 46.5, 46.4, 48.6, 47.5, 51.1, 45.2, 45.2, 50.5, 49.5, 46.4, 
52.8, 40.9, 54.2, 42.5, 51, 49.7, 47.5, 47.6, 52, 46.9, 53.5, 
49, 46.2, 50.9, 45.5)
b <- c(39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, 42, 37.8, 
37.8, 41.1, 38.6, 34.6, 36.6, 38.7, 42.5, 34.4, 46, 37.8, 37.7, 
35.9, 38.2, 38.8, 35.3, 40.6, 40.5, 37.9, 40.5, 39.5, 37.2, 39.5, 
40.9, 36.4, 39.2, 38.8, 42.2, 37.6, 39.8, 36.5, 40.8, 36, 44.1, 
37, 39.6, 41.1, 37.5, 36, 42.3, 46.1, 50, 48.7, 50, 47.6, 46.5, 
45.4, 46.7, 43.3, 46.8, 40.9, 49, 45.5, 48.4, 45.8, 49.3, 42, 
49.2, 46.2, 48.7, 50.2, 45.1, 46.5, 46.3, 42.9, 46.1, 44.5, 47.8, 
48.2, 50, 47.3, 42.8, 45.1, 59.6, 49.6, 50.5, 50.5, 50.1, 50.4, 
46.2, 54.3, 49.8, 49.5, 50.7, 46.4, 48.2, 48.6, 45.2, 52.5, 50, 
50.8, 52.1, 52.2, 49.5, 50.8, 46.9, 51.1, 55.9, 49.1, 49.8, 51.5, 
55.1, 48.8, 50.4, 46.5, 50, 51.3, 45.4, 52.7, 45.2, 46.1, 51.3, 
46, 51.3, 46.6, 51.7, 47, 52, 45.9, 50.5, 50.3, 58, 46.4, 49.2, 
42.4, 48.5, 43.2, 50.6, 46.7, 52)

# In <0.3.4: Exceeded buffer for finding fake snake
ses(a[-c(15:38, 50:90)], b[-c(40:85, 100:125)], max.diffs=80)

# In <0.3.4: Faux Snake Process Failed
ses(a[-(18:38)], b[-(50:80)], max.diffs=115)

# - issue 157 ------------------------------------------------------------------

# Arguably could match on 'A' instead of 'X' and be more compact
a <- c('a', 'b', 'c', 'A', 'X', 'Y', 'Z', 'W')
b <- c('X', 'C', 'A', 'U', 1, 2, 3)
ses(a, b, max.diffs=13)

# segfault (but may have beend debugging code)
ses(letters[1:2], LETTERS[1:2], max.diffs = 4)

# snake overrun
ses(c("G", "C", "T", "C", "A", "C", "G", "C"), c("T", "G"), max.diffs=2)

# effect of max.diffs on compactness (waldo logical comparison)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=0)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=1)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=2)

# back snake all matches before faux snake triggered
ses_dat(
  a=c("T", "A", "A", "C", "C", "A"),
  b=c("A", "G", "A", "A"), max.diffs = 0
)

# - errors ---------------------------------------------------------------------

try(ses('a', 'b', max.diffs='hello')) # "must be scalar integer"
try(ses('a', 'b', warn='hello'))      # "must be TRUE or FALSE"

a <- structure(1, class='diffobj_ogewlhgiadfl2')
try(ses(a, 1)) # "could not be coerced")
try(ses(1, a)) # "could not be coerced"

# We want to have a test file that fully covers the C code in order to run
# valgrind with just that one.  We were unable to isolate simple diffs that
# triggered all the code, but we were able to do it with the below in addition
# to the above.

# - Repeat tests for full coverage in SES file ---------------------------------
# From test.diffStr.R
# formula display changed
if(
  R.Version()$major >= 3 && R.Version()$minor >= "3.1" ||
  R.Version()$major >= 4) {
  rdsf1 <- function(x)
    readRDS(file.path("_helper", "objs", "diffStr", sprintf("%s.rds", x)))
  all.equal(
    as.character(
      diffStr(mdl1, mdl2, extra=list(strict.width="wrap"), line.limit=30)
    ),
    rdsf1(500)
  )
}
# from testthat.warnings.R

A3 <- c("a b c", "d e f A B C D", "g h i", "f")
B3 <- c("a b c", "xd e f E Q L S", "g h i", "q")

diffChr(A3, B3, max.diffs=2) # warn: "Exceeded diff"

# - ses_dat --------------------------------------------------------------------

a <- b <- do.call(paste0, expand.grid(LETTERS, LETTERS))
set.seed(2)
b <- b[-sample(length(b), 100)]
a <- a[-sample(length(b), 100)]

dat <- ses_dat(a, b)
all.equal(dat[['val']][dat[['op']] != 'Delete'], b)
all.equal(dat[['val']][dat[['op']] != 'Insert'], a)
all.equal(a[dat[['id.a']][!is.na(dat[['id.a']])]], a)

dat2 <- ses_dat(a, b, extra=FALSE)
all.equal(dat[1:2], dat2)
all.equal(length(dat2), 2L)

try(ses_dat(a, b, extra=NA)) # 'TRUE or FALSE'

# - encoding agnostic #144 -----------------------------------------------------

# h/t @hadley, these are different in string cache, but should compare equal
# as per ?identical
x <- c("fa\xE7ile", "fa\ue7ile")
Encoding(x) <- c("latin1", "UTF-8")
y <- rev(x)
all.equal(diffobj::ses(x, y), character())