1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
##########################################################
## Demo: n-fold convolution of absolutely continuous
## probability distributions
##########################################################
require(distr)
options("newDevice"=TRUE)
### from version 1.9 of distr on available in the package
### already
if(!isGeneric("convpow"))
setGeneric("convpow",
function(D1, ...) standardGeneric("convpow"))
##########################################################
## Function for n-fold convolution
## -- absolute continuous distribution --
##########################################################
##implentation of Algorithm 3.4. of
#P. Ruckdeschel, M. Kohl (2014): General Purpose Convolution Algorithm for
# Distributions in S4 Classes by Means of FFT. J. Statist. Softw. 59(4), 1-25.
setMethod("convpow",
signature(D1 = "AbscontDistribution"),
function(D1, N){
if((N<1)||(abs(floor(N)-N)>.Machine$double.eps))
stop("N has to be a natural greater than 0")
m <- getdistrOption("DefaultNrFFTGridPointsExponent")
##STEP 1
lower <- ifelse((q.l(D1)(0) > - Inf), q.l(D1)(0),
q.l(D1)(getdistrOption("TruncQuantile"))
)
upper <- ifelse((q.l(D1)(1) < Inf), q.l(D1)(1),
q.l(D1)(getdistrOption("TruncQuantile"),
lower.tail = FALSE)
)
##STEP 2
M <- 2^m
h <- (upper-lower)/M
if(h > 0.01)
warning(paste("Grid for approxfun too wide,",
"increase DefaultNrFFTGridPointsExponent"))
x <- seq(from = lower, to = upper, by = h)
p1 <- p(D1)(x)
##STEP 3
p1 <- p1[2:(M + 1)] - p1[1:M]
##STEP 4
## computation of DFT
pn <- c(p1, numeric((N-1)*M))
fftpn <- fft(pn)
##STEP 5
## convolution theorem for DFTs
pn <- Re(fft(fftpn^N, inverse = TRUE)) / (N*M)
pn <- (abs(pn) >= .Machine$double.eps)*pn
i.max <- N*M-(N-2)
pn <- c(0,pn[1:i.max])
dn <- pn / h
pn <- cumsum(pn)
##STEP 6(density)
## density
x <- seq(from = N*lower+N/2*h,
to = N*upper-N/2*h, by=h)
x <- c(x[1]-h,x[1],x+h)
dnfun1 <- approxfun(x = x, y = dn, yleft = 0, yright = 0)
##STEP 7(density)
standardizer <- sum(dn) - (dn[1]+dn[i.max+1]) / 2
dnfun2 <- function(x) dnfun1(x) / standardizer
##STEP 6(cdf)
## cdf with continuity correction h/2
pnfun1 <- approxfun(x = x+0.5*h, y = pn,
yleft = 0, yright = pn[i.max+1])
##STEP 7(cdf)
pnfun2 <- function(x) pnfun1(x) / pn[i.max+1]
## quantile with continuity correction h/2
yleft <- ifelse(((q.l(D1)(0) == -Inf)|
(q.l(D1)(0) == -Inf)), -Inf, N*lower)
yright <- ifelse(((q.l(D1)(1) == Inf)|
(q.l(D1)(1) == Inf)), Inf, N*upper)
w0 <- options("warn")
options(warn = -1)
qnfun1 <- approxfun(x = pnfun2(x+0.5*h), y = x+0.5*h,
yleft = yleft, yright = yright)
qnfun2 <- function(x){
ind1 <- (x == 0)*(1:length(x))
ind2 <- (x == 1)*(1:length(x))
y <- qnfun1(x)
y <- replace(y, ind1[ind1 != 0], yleft)
y <- replace(y, ind2[ind2 != 0], yright)
return(y)
}
options(w0)
rnew = function(N) apply(matrix(r(e1)(n*N), ncol=N), 1, sum)
return(new("AbscontDistribution", r = rnew, d = dnfun1, p = pnfun2,
q = qnfun2, .withArith = TRUE,
.withSim = FALSE))
})
## initialize a normal distribution
A <- Norm(mean=0, sd=1)
## convolution power
N <- 10
## convolution via FFT
AN <- convpow(as(A,"AbscontDistribution"), N)
## ... for the normal distribution , 'convpow' has an "exact"
## method by version 1.9 so the as(.,.) is needed to
## see how the algorithm above works
## convolution exact
AN1 <- Norm(mean=0, sd=sqrt(N))
## plots of the results
eps <- getdistrOption("TruncQuantile")
par(mfrow=c(1,3))
low <- q.l(AN1)(eps)
upp <- q.l(AN1)(eps, lower.tail = FALSE)
x <- seq(from = low, to = upp, length = 10000)
## densities
plot(x, d(AN1)(x), type = "l", lwd = 5)
lines(x , d(AN)(x), col = "orange", lwd = 1)
title("Densities")
legend("topleft", legend=c("exact", "FFT"),
fill=c("black", "orange"))
## cdfs
plot(x, p(AN1)(x), type = "l", lwd = 5)
lines(x , p(AN)(x), col = "orange", lwd = 1)
title("Cumulative distribution functions")
legend("topleft", legend=c("exact", "FFT"),
fill=c("black", "orange"))
## quantile functions
x <- seq(from = eps, to = 1-eps, length = 1000)
plot(x, q.l(AN1)(x), type = "l", lwd = 5)
lines(x , q.l(AN)(x), col = "orange", lwd = 1)
title("Quantile functions")
legend("topleft",
legend = c("exact", "FFT"),
fill = c("black", "orange"))
|