File: newDistributions-knitr.R

package info (click to toggle)
r-cran-distr 2.9.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,344 kB
  • sloc: ansic: 199; sh: 13; makefile: 2
file content (201 lines) | stat: -rw-r--r-- 7,969 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
## ----knitRPreparations,include=FALSE------------------------------------------
library(knitr)
opts_chunk$set(tidy=FALSE)

## ----Prepa0, include=FALSE, results="hide"------------------------------------
require(distr)

## ----Prepa, echo=FALSE, results="asis"------------------------------
## preparation: set option withSweave to TRUE
require(distr)
distroptions(withSweave = TRUE)
options(width=70)

## ----exam1, eval = TRUE, fig.width=8.0, fig.height=6.5--------------
require(distr)
N <- Norm(mean = 2, sd = 1.3)
P <- Pois(lambda = 1.2)
Z <- 2*N + 3 + P
Z
plot(Z, panel.first = grid(), lwd=3)
p(Z)(0.4)
q(Z)(0.3)
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
Zs <- r(Z)(50)
Zs

## ----DiscrDist, eval = TRUE-----------------------------------------
D <- DiscreteDistribution(supp = c(1,5,7,21), prob = c(0.1,0.1,0.6,0.2))
D
plot(D, panel.first = grid(lwd=2), lwd = 3)

## ----AbscDist, eval = TRUE------------------------------------------
AC <- AbscontDistribution(d = function(x) exp(-abs(x)^3), withStand = TRUE)
AC
plot(AC, panel.first = grid(lwd=2), lwd = 3)

## ----AllClass1, results="asis", echo=TRUE---------------------------
## Class: BinomParameter
setClass("BinomParameter",
          representation = representation(size = "numeric", prob = "numeric"),
          prototype = prototype(size = 1, prob = 0.5, name =
                      gettext("Parameter of a Binomial distribution")
                      ),
          contains = "Parameter"
          )

## ----AllClass2, results="asis", echo=TRUE---------------------------
## Class: binomial distribution
setClass("Binom",
          prototype = prototype(
                      r = function(n){ rbinom(n, size = 1,prob = 0.5) },
                      d = function(x, log = FALSE){
                              dbinom(x, size = 1, prob = 0.5, log = log)
                                          },
                      p = function(q, lower.tail = TRUE, log.p = FALSE ){
                              pbinom(q, size = 1, prob = 0.5,
                                     lower.tail = lower.tail, log.p = log.p)
                                          },
                      q = function(p, lower.tail = TRUE, log.p = FALSE ){
                              qbinom(p, size = 1, prob = 0.5,
                                     lower.tail = lower.tail, log.p = log.p)
                                          },
                      img = new("Naturals"),
                      param = new("BinomParameter"),
                      support = 0:1,
                      lattice = new("Lattice",
                                pivot = 0, width = 1, Length = 2, name =
                                gettext(
                                  "lattice of a Binomial distribution"
                                       )
                                ),
                     .logExact = TRUE,
                     .lowerExact = TRUE
                      ),
          contains = "LatticeDistribution"
          )

## ----BinomDist1, results="asis", echo=TRUE--------------------------
## Access Methods
setMethod("size", "BinomParameter", function(object) object@size)
setMethod("prob", "BinomParameter", function(object) object@prob)
## Replace Methods
setReplaceMethod("size", "BinomParameter",
                  function(object, value){ object@size <- value; object})
setReplaceMethod("prob", "BinomParameter",
                  function(object, value){ object@prob <- value; object})

## ----AllGenerics, results="asis", echo=TRUE-------------------------
if(!isGeneric("size"))
   setGeneric("size", function(object) standardGeneric("size"))
if(!isGeneric("prob"))
   setGeneric("prob", function(object) standardGeneric("prob"))

## ----BinomDist2, results="asis", echo=TRUE--------------------------
setValidity("BinomParameter", function(object){
  if(length(prob(object)) != 1)
    stop("prob has to be a numeric of length 1")
  if(prob(object) < 0)
    stop("prob has to be in [0,1]")
  if(prob(object) > 1)
    stop("prob has to be in [0,1]")
  if(length(size(object)) != 1)
    stop("size has to be a numeric of length 1")
  if(size(object) < 1)
    stop("size has to be a natural greater than 0")
  if(!identical(floor(size(object)), size(object)))
    stop("size has to be a natural greater than 0")
  else return(TRUE)
})

## ----BinomDist3, results="asis", echo=TRUE--------------------------
Binom <- function(size = 1,prob = 0.5) new("Binom", size = size, prob = prob)

## ----BinomDist4, results="asis", echo=TRUE--------------------------
## Convolution for two binomial distributions Bin(n1,p1) and Bin(n2,p2)
## Distinguish cases
## p1 == p2 und p1 != p2


setMethod("+", c("Binom","Binom"),
          function(e1,e2){
            newsize <- size(e1) + size(e2)

            if(isTRUE(all.equal(prob(e1),prob(e2))))
               return(new("Binom", prob = prob(e1), size = newsize,
                          .withArith = TRUE))

            return(as(e1, "LatticeDistribution") + e2)
          })

## ----Prepa2, echo=FALSE, results="asis"-----------------------------
## preparation: set option withSweave to TRUE
require(distrEx)

## ----Expect, results="asis", echo=TRUE------------------------------
setMethod("E", signature(object = "Binom",
                         fun = "missing",
                         cond = "missing"),
    function(object, low = NULL, upp = NULL, ...){
    if(!is.null(low)) if(low <= min(support(object))) low <- NULL
    if(!is.null(upp)) if(upp >= max(support(object))) upp <- NULL
    if(is.null(low) && is.null(upp))
        return(size(object)*prob(object))
    else{
        if(is.null(low)) low <- -Inf
        if(is.null(upp)) upp <- Inf
        if(low == -Inf){
           if(upp == Inf) return(size(object)*prob(object))
           else return(m1df(object, upper = upp, ...))
        }else{
           E1 <- m1df(object, upper = low, ...)
           E2 <- if(upp == Inf)
                    size(object)*prob(object) else m1df(object, upper = upp, ...)
           return(E2-E1)
        }
    }
   })

## ----var, results="asis", echo=TRUE---------------------------------
setMethod("var", signature(x = "Binom"),
    function(x,...){
    dots <- match.call(call = sys.call(sys.parent(1)),
                       expand.dots = FALSE)$"..."
    fun <- NULL; cond <- NULL; low <- NULL; upp <- NULL
    if(hasArg(low)) low <- dots$low
    if(hasArg(upp)) upp <- dots$upp
    if(hasArg(fun)||hasArg(cond)||!is.null(low)||!is.null(upp))
        return(var(as(x,"DiscreteDistribution"),...))
    else
        return(size(x)*prob(x)*(1-prob(x)))
    })

## ----skew, results="asis", echo=TRUE--------------------------------
setMethod("skewness", signature(x = "Binom"),
    function(x,  ...){
    dots <- match.call(call = sys.call(sys.parent(1)),
                       expand.dots = FALSE)$"..."
    fun <- NULL; cond <- NULL; low <- NULL; upp <- NULL
    if(hasArg(low)) low <- dots$low
    if(hasArg(upp)) upp <- dots$upp
    if(hasArg(fun)||hasArg(cond)||!is.null(low)||!is.null(upp))
       return(skewness(as(x,"DiscreteDistribution"),...))
    else
        return((1-2*prob(x))/sqrt(size(x)*prob(x)*(1-prob(x))))
    })

## ----kurt, results="asis", echo=TRUE--------------------------------
setMethod("kurtosis", signature(x = "Binom"),
    function(x,  ...){
    dots <- match.call(call = sys.call(sys.parent(1)),
                       expand.dots = FALSE)$"..."
    fun <- NULL; cond <- NULL; low <- NULL; upp <- NULL
    if(hasArg(low)) low <- dots$low
    if(hasArg(upp)) upp <- dots$upp
    if(hasArg(fun)||hasArg(cond)||!is.null(low)||!is.null(upp))
       return(kurtosis(as(x,"DiscreteDistribution"),...))
    else
        p <- prob(x)
        return((1-6*p*(1-p))/(size(x)*p*(1-p)))
    })