1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
\name{AbscontDistribution-class}
\docType{class}
\alias{AbscontDistribution-class}
\alias{AffLinDistribution-class}
\alias{AffLinAbscontDistribution-class}
\alias{sqrt,AbscontDistribution-method}
\alias{initialize,AbscontDistribution-method}
\alias{initialize,AffLinAbscontDistribution-method}
\alias{sqrt,AbscontDistribution-method}
\title{Class "AbscontDistribution"}
\description{The \code{AbscontDistribution}-class is the mother-class of the classes \code{Beta}, \code{Cauchy},
\code{Chisq}, \code{Exp}, \code{F}, \code{Gammad}, \code{Lnorm}, \code{Logis}, \code{Norm}, \code{T}, \code{Unif} and
\code{Weibull}. Further absolutely continuous distributions can be defined either by declaration of
own random number generator, density, cumulative distribution and quantile functions, or as result of a
convolution of two absolutely continuous distributions or by application of a mathematical operator to an absolutely
continuous distribution.}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{new("AbscontDistribution", r, d, p, q)}.
More comfortably, you may use the generating function \code{\link{AbscontDistribution}}.
The result of these calls is an absolutely continuous distribution.
}
\section{Slots}{
\describe{
\item{\code{img}}{Object of class \code{"Reals"}: the space of the image of this distribution which has dimension 1
and the name "Real Space" }
\item{\code{param}}{Object of class \code{"Parameter"}: the parameter of this distribution, having only
the slot name "Parameter of an absolutely continuous distribution" }
\item{\code{r}}{Object of class \code{"function"}: generates random numbers}
\item{\code{d}}{Object of class \code{"function"}: density function}
\item{\code{p}}{Object of class \code{"function"}: cumulative distribution function}
\item{\code{q}}{Object of class \code{"function"}: quantile function}
\item{\code{gaps}}{[from version 1.9 on] Object of class \code{"OptionalMatrix"},
i.e.; an object which may either be \code{NULL} ora \code{matrix}.
This slot, if non-\code{NULL}, contains left and right
endpoints of intervals where the density of the object is 0. This slot
may be inspected by the accessor \code{\link{gaps}()} and modified by a corresponding
replacement method. It may also be filled automatically by
\code{\link{setgaps}()}. For saved objects from earlier versions, we provide functions
\code{\link{isOldVersion}} and \code{\link{conv2NewVersion}}.}
\item{\code{.withArith}}{logical: used internally to issue warnings as to
interpretation of arithmetics}
\item{\code{.withSim}}{logical: used internally to issue warnings as to
accuracy}
\item{\code{.logExact}}{logical: used internally to flag the case where
there are explicit formulae for the log version of density, cdf, and
quantile function}
\item{\code{.lowerExact}}{logical: used internally to flag the case where
there are explicit formulae for the lower tail version of cdf and quantile
function}
\item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
used internally to avoid unnecessary calculations.}
}}
\section{Extends}{
Class \code{"UnivariateDistribution"}, directly. \cr
Class \code{"Distribution"}, by class \code{"UnivariateDistribution"}.
}
\section{Methods}{
\describe{
\item{initialize}{\code{signature(.Object = "AbscontDistribution")}: initialize method }
\item{Math}{\code{signature(x = "AbscontDistribution")}: application of a mathematical function, e.g. \code{sin} or
\code{exp} (does not work with \code{log}, \code{sign}!), to this absolutely continouos distribution
\itemize{
\item \code{abs}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{abs(x)}.
\item \code{exp}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{exp(x)}.
\item \code{sign}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{sign(x)}.
\item \code{sqrt}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{sqrt(x)}.
\item \code{log}: \code{signature(x = "AbscontDistribution")}: (with optional further argument \code{base}, defaulting to \code{exp(1)}) exact image distribution of \code{log(x)}.
\item \code{log10}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{log10(x)}.
\item \code{gamma}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{gamma(x)}.
\item \code{lgamma}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{lgamma(x)}.
\item \code{digamma}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{digamma(x)}.
\item \code{sqrt}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{sqrt(x)}.
}}
\item{-}{\code{signature(e1 = "AbscontDistribution")}: application of `-' to this absolutely continuous distribution.}
\item{*}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: multiplication of this absolutely continuous distribution by an object of class \code{"numeric"}}
\item{/}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: division of this absolutely continuous distribution by an object of class \code{"numeric"}}
\item{+}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: addition of this absolutely continuous distribution to an object of class \code{"numeric"}.}
\item{-}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: subtraction of an object of class \code{"numeric"} from this absolutely continuous distribution.}
\item{*}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}: multiplication of this absolutely continuous distribution by an object of class \code{"numeric"}.}
\item{+}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}: addition of this absolutely continuous distribution to an object of class \code{"numeric"}.}
\item{-}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}: subtraction of this absolutely continuous distribution from an object of class \code{"numeric"}.}
\item{+}{\code{signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")}: Convolution of two absolutely continuous distributions. The slots p, d and q are approximated by grids.}
\item{-}{\code{signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")}: Convolution of two absolutely continuous distributions. The slots p, d and q are approximated by grids.}
\item{plot}{\code{signature(object = "AbscontDistribution")}: plots density, cumulative distribution and quantile function.}
}
}
\section{Internal subclass "AffLinAbscontDistribution"}{
To enhance accuracy of several functionals on distributions,
mainly from package \pkg{distrEx}, from version 1.9 of this package on,
there is an internally used (but exported) subclass
\code{"AffLinAbscontDistribution"} which has extra slots
\code{a}, \code{b} (both of class \code{"numeric"}), and \code{X0}
(of class \code{"AbscontDistribution"}), to capture the fact
that the object has the same distribution as \code{a * X0 + b}. This is
the class of the return value of methods
\describe{
\item{-}{\code{signature(e1 = "AbscontDistribution")}}
\item{*}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
\item{/}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
\item{+}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
\item{-}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
\item{*}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}}
\item{+}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}}
\item{-}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}}
\item{-}{\code{signature(e1 = "AffLinAbscontDistribution")}}
\item{*}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
\item{/}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
\item{+}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
\item{-}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
\item{*}{\code{signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")}}
\item{+}{\code{signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")}}
\item{-}{\code{signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")}}
}
There also is a class union of \code{"AffLinAbscontDistribution"},
\code{"AffLinDiscreteDistribution"}, \code{"AffLinUnivarLebDecDistribution"}
and called \code{"AffLinDistribution"}
which is used for functionals.
}
\section{Internal virtual superclass "AcDcLcDistribution"}{
As many operations should be valid no matter whether the operands
are of class \code{"AbscontDistribution"},
\code{"DiscreteDistribution"}, or \code{"UnivarLebDecDistribution"},
there is a class union of these classes called \code{"AcDcLcDistribution"};
in partiucalar methods for \code{"*"}, \code{"/"},
\code{"^"} (see \link{operators-methods}) and methods
\code{\link{Minimum}}, \code{Maximum}, \code{\link{Truncate}}, and
\code{\link{Huberize}}, and \code{\link{convpow}} are defined for this
class union.
}
\author{
Thomas Stabla \email{statho3@web.de},\cr
Florian Camphausen \email{fcampi@gmx.de},\cr
Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},\cr
Matthias Kohl \email{Matthias.Kohl@stamats.de}
}
\seealso{
\code{\link{AbscontDistribution}}
\code{\link{Parameter-class}}
\code{\link{UnivariateDistribution-class}}
\code{\link{Beta-class}}
\code{\link{Cauchy-class}}
\code{\link{Chisq-class}}
\code{\link{Exp-class}}
\code{\link{Fd-class}}
\code{\link{Gammad-class}}
\code{\link{Lnorm-class}}
\code{\link{Logis-class}}
\code{\link{Norm-class}}
\code{\link{Td-class}}
\code{\link{Unif-class}}
\code{\link{Weibull-class}}
\code{\link{DiscreteDistribution-class}}
\code{\link{Reals-class}}
\code{\link{RtoDPQ}}
}
\examples{
N <- Norm() # N is a normal distribution with mean=0 and sd=1.
E <- Exp() # E is an exponential distribution with rate=1.
A1 <- E+1 # a new absolutely continuous distributions with exact slots d, p, q
A2 <- A1*3 # a new absolutely continuous distributions with exact slots d, p, q
A3 <- N*0.9 + E*0.1 # a new absolutely continuous distribution with approximated slots d, p, q
r(A3)(1) # one random number generated from this distribution, e.g. -0.7150937
d(A3)(0) # The (approximated) density for x=0 is 0.43799.
p(A3)(0) # The (approximated) probability that x <= 0 is 0.45620.
q(A3)(.1) # The (approximated) 10 percent quantile is -1.06015.
## in RStudio or Jupytier IRKernel, use q.l(.)(.) instead of q(.)(.)
}
\keyword{distribution}
\concept{absolutely continuous distribution}
\concept{S4 distribution class}
|