File: AbscontDistribution-class.Rd

package info (click to toggle)
r-cran-distr 2.9.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,344 kB
  • sloc: ansic: 199; sh: 13; makefile: 2
file content (176 lines) | stat: -rw-r--r-- 11,194 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
\name{AbscontDistribution-class} 
\docType{class}
\alias{AbscontDistribution-class}
\alias{AffLinDistribution-class}
\alias{AffLinAbscontDistribution-class}
\alias{sqrt,AbscontDistribution-method}
\alias{initialize,AbscontDistribution-method}
\alias{initialize,AffLinAbscontDistribution-method}
\alias{sqrt,AbscontDistribution-method}

\title{Class "AbscontDistribution"}
\description{The \code{AbscontDistribution}-class is the mother-class of the classes \code{Beta}, \code{Cauchy}, 
\code{Chisq}, \code{Exp}, \code{F}, \code{Gammad}, \code{Lnorm}, \code{Logis}, \code{Norm}, \code{T}, \code{Unif} and 
\code{Weibull}. Further absolutely continuous distributions can be defined either by declaration of
own random number generator, density, cumulative distribution and quantile functions, or as result of a 
convolution of two absolutely continuous distributions or by application of a mathematical operator to an absolutely
continuous distribution.}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{new("AbscontDistribution", r, d, p, q)}.
More comfortably, you may use the generating function \code{\link{AbscontDistribution}}.
The result of these calls is an absolutely continuous distribution. 
}
\section{Slots}{
  \describe{
    \item{\code{img}}{Object of class \code{"Reals"}: the space of the image of this distribution which has dimension 1
    and the name "Real Space" }
    \item{\code{param}}{Object of class \code{"Parameter"}: the parameter of this distribution, having only 
    the slot name "Parameter of an absolutely continuous distribution" }
    \item{\code{r}}{Object of class \code{"function"}: generates random numbers}
    \item{\code{d}}{Object of class \code{"function"}: density function}
    \item{\code{p}}{Object of class \code{"function"}: cumulative distribution function}
    \item{\code{q}}{Object of class \code{"function"}: quantile function}
    \item{\code{gaps}}{[from version 1.9 on] Object of class \code{"OptionalMatrix"}, 
          i.e.; an object which may either be \code{NULL} ora \code{matrix}. 
          This slot, if non-\code{NULL}, contains left and right 
          endpoints of intervals where the density of the object is 0. This slot 
          may be inspected by the accessor \code{\link{gaps}()} and modified by a corresponding
          replacement method. It may also be filled automatically by 
         \code{\link{setgaps}()}. For saved objects from earlier versions, we provide functions
         \code{\link{isOldVersion}} and \code{\link{conv2NewVersion}}.}
    \item{\code{.withArith}}{logical: used internally to issue warnings as to 
            interpretation of arithmetics}
    \item{\code{.withSim}}{logical: used internally to issue warnings as to 
          accuracy}
    \item{\code{.logExact}}{logical: used internally to flag the case where 
    there are explicit formulae for the log version of density, cdf, and 
    quantile function}
    \item{\code{.lowerExact}}{logical: used internally to flag the case where 
    there are explicit formulae for the lower tail version of cdf and quantile 
    function}
    \item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
     used internally to avoid unnecessary calculations.}
}}
\section{Extends}{
Class \code{"UnivariateDistribution"}, directly. \cr
Class \code{"Distribution"}, by class \code{"UnivariateDistribution"}.
}
\section{Methods}{
  \describe{
    \item{initialize}{\code{signature(.Object = "AbscontDistribution")}: initialize method }
    \item{Math}{\code{signature(x = "AbscontDistribution")}: application of a mathematical function, e.g. \code{sin} or
    \code{exp} (does not work with \code{log}, \code{sign}!), to this absolutely continouos distribution
    \itemize{
      \item \code{abs}: \code{signature(x = "AbscontDistribution")}: exact image distribution of \code{abs(x)}.
      \item \code{exp}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{exp(x)}.
      \item \code{sign}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{sign(x)}.
      \item \code{sqrt}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{sqrt(x)}.
      \item \code{log}: \code{signature(x = "AbscontDistribution")}:  (with optional further argument \code{base}, defaulting to \code{exp(1)}) exact image distribution of \code{log(x)}.
      \item \code{log10}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{log10(x)}.
      \item \code{gamma}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{gamma(x)}.
      \item \code{lgamma}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{lgamma(x)}.
      \item \code{digamma}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{digamma(x)}.
      \item \code{sqrt}: \code{signature(x = "AbscontDistribution")}:  exact image distribution of \code{sqrt(x)}.
    }}
    \item{-}{\code{signature(e1 = "AbscontDistribution")}: application of `-' to this absolutely continuous distribution.}
    \item{*}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: multiplication of this absolutely continuous distribution by an object of class \code{"numeric"}}
    \item{/}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: division of this absolutely continuous distribution by an object of class \code{"numeric"}}
    \item{+}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: addition of this absolutely continuous distribution to an object of class \code{"numeric"}.}
    \item{-}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}: subtraction of an object of class \code{"numeric"} from this absolutely continuous distribution.}
    \item{*}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}: multiplication of this absolutely continuous distribution by an object of class \code{"numeric"}.}
    \item{+}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}: addition of this absolutely continuous distribution to an object of class \code{"numeric"}.}
    \item{-}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}: subtraction of this absolutely continuous distribution from an object of class \code{"numeric"}.}
    \item{+}{\code{signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")}: Convolution of two absolutely continuous distributions. The slots p, d and q are approximated by grids.}
    \item{-}{\code{signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")}: Convolution of two absolutely continuous distributions. The slots p, d and q are approximated by grids.}
    \item{plot}{\code{signature(object = "AbscontDistribution")}: plots density, cumulative distribution and quantile function.}
  }
}

\section{Internal subclass "AffLinAbscontDistribution"}{
To enhance accuracy of several functionals on distributions,
  mainly from package \pkg{distrEx}, from version 1.9 of this package on, 
  there is an internally used (but exported) subclass 
  \code{"AffLinAbscontDistribution"} which has extra slots 
  \code{a}, \code{b} (both of class \code{"numeric"}),  and \code{X0} 
  (of class \code{"AbscontDistribution"}), to capture the fact 
  that the object has the same distribution as \code{a * X0 + b}. This is 
  the class of the return value of methods 
  \describe{
    \item{-}{\code{signature(e1 = "AbscontDistribution")}}
    \item{*}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
    \item{/}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
    \item{+}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
    \item{-}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")}}
    \item{*}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}}
    \item{+}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}}
    \item{-}{\code{signature(e1 = "numeric", e2 = "AbscontDistribution")}}
    \item{-}{\code{signature(e1 = "AffLinAbscontDistribution")}}
    \item{*}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
    \item{/}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
    \item{+}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
    \item{-}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")}}
    \item{*}{\code{signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")}}
    \item{+}{\code{signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")}}
    \item{-}{\code{signature(e1 = "numeric", e2 = "AffLinAbscontDistribution")}}
  }
  There also is a class union of \code{"AffLinAbscontDistribution"},
  \code{"AffLinDiscreteDistribution"}, \code{"AffLinUnivarLebDecDistribution"}
  and called \code{"AffLinDistribution"}
  which is used for functionals.
}
\section{Internal virtual superclass "AcDcLcDistribution"}{
As many operations should be valid no matter whether the operands
are of class \code{"AbscontDistribution"},
  \code{"DiscreteDistribution"}, or \code{"UnivarLebDecDistribution"},
there is a class union of these classes called \code{"AcDcLcDistribution"};
in partiucalar methods for \code{"*"}, \code{"/"}, 
\code{"^"} (see \link{operators-methods}) and methods
\code{\link{Minimum}}, \code{Maximum}, \code{\link{Truncate}}, and
 \code{\link{Huberize}}, and \code{\link{convpow}} are defined for this 
 class union.   
}

\author{
  Thomas Stabla \email{statho3@web.de},\cr 
  Florian Camphausen \email{fcampi@gmx.de},\cr
  Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},\cr 
  Matthias Kohl \email{Matthias.Kohl@stamats.de}
  }


\seealso{
\code{\link{AbscontDistribution}}
\code{\link{Parameter-class}}
\code{\link{UnivariateDistribution-class}}
\code{\link{Beta-class}}
\code{\link{Cauchy-class}}
\code{\link{Chisq-class}}
\code{\link{Exp-class}}
\code{\link{Fd-class}}
\code{\link{Gammad-class}}
\code{\link{Lnorm-class}}
\code{\link{Logis-class}}
\code{\link{Norm-class}}
\code{\link{Td-class}}
\code{\link{Unif-class}}
\code{\link{Weibull-class}}
\code{\link{DiscreteDistribution-class}}
\code{\link{Reals-class}}
\code{\link{RtoDPQ}}

}
\examples{
N <-  Norm() # N is a normal distribution with mean=0 and sd=1.
E <-  Exp() # E is an exponential distribution with rate=1.
A1 <-  E+1 # a new absolutely continuous distributions with exact slots d, p, q
A2 <-  A1*3 # a new absolutely continuous distributions with exact slots d, p, q
A3 <- N*0.9 + E*0.1 # a new absolutely continuous distribution with approximated slots d, p, q
r(A3)(1) # one random number generated from this distribution, e.g. -0.7150937
d(A3)(0) # The (approximated) density for x=0 is 0.43799.
p(A3)(0) # The (approximated) probability that x <= 0 is 0.45620.
q(A3)(.1) # The (approximated) 10 percent quantile is -1.06015.
## in RStudio or Jupytier IRKernel, use q.l(.)(.) instead of q(.)(.)
}
\keyword{distribution}
\concept{absolutely continuous distribution}
\concept{S4 distribution class}