1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
\name{Binom-class}
\docType{class}
\alias{Binom-class}
\alias{Binom}
\alias{initialize,Binom-method}
\title{Class "Binom" }
\description{The binomial distribution with \code{size} \eqn{= n}, by default
\eqn{=1}, and
\code{prob} \eqn{= p}, by default \eqn{=0.5}, has density
\deqn{p(x) = {n \choose x} {p}^{x} {(1-p)}^{n-x}}{
p(x) = choose(n,x) p^x (1-p)^(n-x)}
for \eqn{x = 0, \ldots, n}.
C.f.\code{\link[stats:Binomial]{rbinom}}
}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{Binom(prob, size)}.
This object is a binomial distribution.
}
\section{Slots}{
\describe{
\item{\code{img}}{Object of class \code{"Naturals"}: The space of the
image of this distribution has got dimension 1 and the
name "Natural Space". }
\item{\code{param}}{Object of class \code{"BinomParameter"}: the parameter
of this distribution (\code{prob}, \code{size}), declared at its
instantiation }
\item{\code{r}}{Object of class \code{"function"}: generates random
numbers (calls function \code{rbinom}) }
\item{\code{d}}{Object of class \code{"function"}: density function (calls
function \code{dbinom}) }
\item{\code{p}}{Object of class \code{"function"}: cumulative function
(calls function \code{pbinom}) }
\item{\code{q}}{Object of class \code{"function"}: inverse of the
cumulative function (calls function \code{qbinom}).
The quantile is defined as the smallest value x such that F(x) >= p, where
F is the cumulative function. }
\item{\code{support}}{Object of class \code{"numeric"}: a (sorted)
vector containing the support of the discrete density function}
\item{\code{.withArith}}{logical: used internally to issue warnings as to
interpretation of arithmetics}
\item{\code{.withSim}}{logical: used internally to issue warnings as to
accuracy}
\item{\code{.logExact}}{logical: used internally to flag the case where
there are explicit formulae for the log version of density, cdf, and
quantile function}
\item{\code{.lowerExact}}{logical: used internally to flag the case where
there are explicit formulae for the lower tail version of cdf and quantile
function}
\item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
used internally to avoid unnecessary calculations.}
}
}
\section{Extends}{
Class \code{"DiscreteDistribution"}, directly.\cr
Class \code{"UnivariateDistribution"}, by class \code{"DiscreteDistribution"}.\cr
Class \code{"Distribution"}, by class \code{"DiscreteDistribution"}.
}
\section{Methods}{
\describe{
\item{+}{\code{signature(e1 = "Binom", e2 = "Binom")}: For two binomial
distributions with equal probabilities the exact convolution
formula is implemented thereby improving the general numerical
accuracy.}
\item{initialize}{\code{signature(.Object = "Binom")}: initialize method }
\item{prob}{\code{signature(object = "Binom")}: returns the slot \code{prob}
of the parameter of the distribution }
\item{prob<-}{\code{signature(object = "Binom")}: modifies the slot
\code{prob} of the parameter of the distribution }
\item{size}{\code{signature(object = "Binom")}: returns the slot \code{size}
of the parameter of the distribution }
\item{size<-}{\code{signature(object = "Binom")}: modifies the slot
\code{size} of the parameter of the distribution }
}
}
\author{
Thomas Stabla \email{statho3@web.de},\cr
Florian Camphausen \email{fcampi@gmx.de},\cr
Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},\cr
Matthias Kohl \email{Matthias.Kohl@stamats.de}
}
\seealso{
\code{\link{BinomParameter-class}}
\code{\link{DiscreteDistribution-class}}
\code{\link{Naturals-class}}
\code{\link[stats:Binomial]{rbinom}}
}
\examples{
B <- Binom(prob=0.5,size=1) # B is a binomial distribution with prob=0.5 and size=1.
r(B)(1) # # one random number generated from this distribution, e.g. 1
d(B)(1) # Density of this distribution is 0.5 for x=1.
p(B)(0.4) # Probability that x<0.4 is 0.5.
q(B)(.1) # x=0 is the smallest value x such that p(B)(x)>=0.1.
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
size(B) # size of this distribution is 1.
size(B) <- 2 # size of this distribution is now 2.
C <- Binom(prob = 0.5, size = 1) # C is a binomial distribution with prob=0.5 and size=1.
D <- Binom(prob = 0.6, size = 1) # D is a binomial distribution with prob=0.6 and size=1.
E <- B + C # E is a binomial distribution with prob=0.5 and size=3.
F <- B + D # F is an object of class LatticeDistribution.
G <- B + as(D,"DiscreteDistribution") ## DiscreteDistribution
}
\keyword{distribution}
\concept{discrete distribution}
\concept{lattice distribution}
\concept{Binomial family}
\concept{Binomial distribution}
\concept{S4 distribution class}
\concept{generating function}
|