1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
\name{LatticeDistribution-class}
\docType{class}
\alias{AffLinLatticeDistribution-class}
\alias{LatticeDistribution-class}
\alias{lattice}
\alias{lattice-method}
\alias{lattice,LatticeDistribution-method}
\alias{initialize,LatticeDistribution-method}
\alias{initialize,AffLinLatticeDistribution-method}
\alias{sqrt,LatticeDistribution-method}
\alias{coerce,LatticeDistribution,DiscreteDistribution-method}
\alias{coerce,AffLinLatticeDistribution,AffLinDiscreteDistribution-method}
\title{Class "LatticeDistribution"}
\description{The \code{LatticeDistribution}-class is the mother-class of the
classes \code{Binom}, \code{Dirac}, \code{Geom}, \code{Hyper}, \code{Nbinom} and
\code{Poisson}. It formalizes a distribution on a regular affine
linear lattice.}
\section{Objects from the Class}{
The usual way to generate objects of class \code{LatticeDistribution} is to call
the generating function \code{\link{LatticeDistribution}}. \cr
Somewhat more flexible, but also proner to inconsistencies is a call to
\code{new("LatticeDistribution")}, where you may explicitly specify random
number generator, (counting) density, cumulative distribution and quantile
functions. For conveniance, in this call to \code{new("LatticeDistribution")},
an additional possibility is to only specify the random number generator. The
function \code{RtoDPQ.d} then approximates the three remaining slots \code{d},
\code{p} and \code{q} by random sampling.
}
\section{Slots}{
\describe{
\item{\code{img}}{Object of class \code{"Reals"}: the space of the image
of this distribution which has dimension 1 and the name "Real Space" }
\item{\code{param}}{Object of class \code{"Parameter"}: the parameter of
this distribution, having only the slot name
"Parameter of a discrete distribution" }
\item{\code{r}}{Object of class \code{"function"}:
generates random numbers}
\item{\code{d}}{Object of class \code{"function"}:
(counting) density/probability function}
\item{\code{p}}{Object of class \code{"function"}:
cumulative distribution function}
\item{\code{q}}{Object of class \code{"function"}:
quantile function}
\item{\code{support}}{Object of class \code{"numeric"}: a (sorted) vector
containing the support of the discrete
density function}
\item{\code{lattice}}{Object of class \code{"Lattice"}: the lattice
generating the support.}
\item{\code{.withArith}}{logical: used internally to issue warnings as to
interpretation of arithmetics}
\item{\code{.withSim}}{logical: used internally to issue warnings as to
accuracy}
\item{\code{.logExact}}{logical: used internally to flag the case where
there are explicit formulae for the log version of density, cdf, and
quantile function}
\item{\code{.lowerExact}}{logical: used internally to flag the case where
there are explicit formulae for the lower tail version of cdf and quantile
function}
\item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
used internally to avoid unnecessary calculations.}
}
}
\section{Extends}{
Class \code{"UnivariateDistribution"}, directly.\cr
Class \code{"Distribution"}, by class \code{"UnivariateDistribution"}.
}
\section{Methods}{
\describe{
\item{\code{initialize}}{\code{signature(.Object = "LatticeDistribution")}:
initialize method }
\item{-}{\code{signature(e1 = "LatticeDistribution")}:
application of `-' to this lattice distribution}
\item{*}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}:
multiplication of this lattice distribution
by an object of class `numeric'}
\item{/}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}:
division of this lattice distribution by an object of class `numeric'}
\item{+}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}:
addition of this lattice distribution to an object of class `numeric'}
\item{-}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}:
subtraction of an object of class `numeric' from this lattice
distribution }
\item{*}{\code{signature(e1 = "numeric", e2 = "LatticeDistribution")}:
multiplication of this lattice distribution by an object of class `numeric'}
\item{+}{\code{signature(e1 = "numeric", e2 = "LatticeDistribution")}:
addition of this lattice distribution to an object of class `numeric'}
\item{-}{\code{signature(e1 = "numeric", e2 = "LatticeDistribution")}:
subtraction of this lattice distribution from an object of class `numeric'}
\item{+}{\code{signature(e1 = "LatticeDistribution",
e2 = "LatticeDistribution")}: Convolution of two lattice distributions.
Slots p, d and q are approximated by grids.}
\item{-}{\code{signature(e1 = "LatticeDistribution",
e2 = "LatticeDistribution")}: Convolution of two lattice
distributions. The slots p, d and q are approximated by grids.}
\item{\code{sqrt}}{\code{signature(x = "LatticeDistribution")}: exact
image distribution of \code{sqrt(x)}.}
\item{\code{lattice}}{accessor method to the corresponding slot.}
\item{\code{coerce}}{\code{signature(from = "LatticeDistribution",
to = "DiscreteDistribution")}: coerces an object from
\code{"LatticeDistribution"} to \code{"DiscreteDistribution"}
thereby cancelling out support points with probability 0.}
}
}
\section{Internal subclass "AffLinLatticeDistribution"}{
To enhance accuracy of several functionals on distributions,
mainly from package \pkg{distrEx}, there is an internally used
(but exported) subclass \code{"AffLinLatticeDistribution"} which has extra slots
\code{a}, \code{b} (both of class \code{"numeric"}), and \code{X0}
(of class \code{"LatticeDistribution"}), to capture the fact
that the object has the same distribution as \code{a * X0 + b}. This is
the class of the return value of methods
\describe{
\item{-}{\code{signature(e1 = "LatticeDistribution")}}
\item{*}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}}
\item{/}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}}
\item{+}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}}
\item{-}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")}}
\item{*}{\code{signature(e1 = "numeric", e2 = "LatticeDistribution")}}
\item{+}{\code{signature(e1 = "numeric", e2 = "LatticeDistribution")}}
\item{-}{\code{signature(e1 = "numeric", e2 = "LatticeDistribution")}}
\item{-}{\code{signature(e1 = "AffLinLatticeDistribution")}}
\item{*}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")}}
\item{/}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")}}
\item{+}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")}}
\item{-}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")}}
\item{*}{\code{signature(e1 = "numeric", e2 = "AffLinLatticeDistribution")}}
\item{+}{\code{signature(e1 = "numeric", e2 = "AffLinLatticeDistribution")}}
\item{-}{\code{signature(e1 = "numeric", e2 = "AffLinLatticeDistribution")}}
}
There is also an explicit \code{coerce}-method from class
\code{"AffLinLatticeDistribution"} to class \code{"AffLinDiscreteDistribution"}
which cancels out support points with probability 0.
}
\author{Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de}}
\note{ Working with a computer, we use a finite interval as support which
carries at least mass \code{1-getdistrOption("TruncQuantile")}. }
\seealso{
\code{\link{LatticeDistribution}}
\code{\link{Parameter-class}}
\code{\link{Lattice-class}}
\code{\link{UnivariateDistribution-class}}
\code{\link{DiscreteDistribution-class}}
\code{\link{Binom-class}}
\code{\link{Dirac-class}}
\code{\link{Geom-class}}
\code{\link{Hyper-class}}
\code{\link{Nbinom-class}}
\code{\link{Pois-class}}
\code{\link{AbscontDistribution-class}}
\code{\link{Reals-class}}
\code{\link{RtoDPQ.d}}
}
\examples{
B <- Binom(prob = 0.1,size = 10) # B is a Binomial distribution w/ prob=0.1 and size=10.
P <- Pois(lambda = 1) # P is a Poisson distribution with lambda = 1.
D1 <- B+1 # a new Lattice distributions with exact slots d, p, q
D2 <- D1*3 # a new Lattice distributions with exact slots d, p, q
D3 <- B+P # a new Lattice distributions with approximated slots d, p, q
D4 <- D1+P # a new Lattice distributions with approximated slots d, p, q
support(D4) # the (approximated) support of this distribution is 1, 2, ..., 21
r(D4)(1) # one random number generated from this distribution, e.g. 4
d(D4)(1) # The (approximated) density for x=1 is 0.1282716.
p(D4)(1) # The (approximated) probability that x<=1 is 0.1282716.
q(D4)(.5) # The (approximated) 50 percent quantile is 3.
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
}
\keyword{distribution}
\concept{discrete distribution}
\concept{lattice distribution}
\concept{lattice of a distribution}
\concept{S4 distribution class}
\concept{generating function}
|