1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
\name{Minimum-methods}
\docType{methods}
\alias{Minimum-methods}
\alias{Minimum}
\alias{Maximum-methods}
\alias{Maximum}
\alias{Minimum,AbscontDistribution,AbscontDistribution-method}
\alias{Minimum,DiscreteDistribution,DiscreteDistribution-method}
\alias{Minimum,AbscontDistribution,Dirac-method}
\alias{Minimum,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{Minimum,AbscontDistribution,numeric-method}
\alias{Minimum,DiscreteDistribution,numeric-method}
\alias{Minimum,AcDcLcDistribution,numeric-method}
\alias{Maximum,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{Maximum,AcDcLcDistribution,numeric-method}
\title{ Methods for functions Minimum and Maximum in Package `distr' }
\description{Minimum and Maximum-methods}
\usage{
Minimum(e1, e2, ...)
Maximum(e1, e2, ...)
\S4method{Minimum}{AbscontDistribution,AbscontDistribution}(e1,e2, ...)
\S4method{Minimum}{DiscreteDistribution,DiscreteDistribution}(e1,e2, ...)
\S4method{Minimum}{AbscontDistribution,Dirac}(e1,e2,
withSimplify = getdistrOption("simplifyD"))
\S4method{Minimum}{AcDcLcDistribution,AcDcLcDistribution}(e1,e2,
withSimplify = getdistrOption("simplifyD"))
\S4method{Maximum}{AcDcLcDistribution,AcDcLcDistribution}(e1,e2,
withSimplify = getdistrOption("simplifyD"))
\S4method{Minimum}{AbscontDistribution,numeric}(e1,e2, ...)
\S4method{Minimum}{DiscreteDistribution,numeric}(e1,e2, ...)
\S4method{Minimum}{AcDcLcDistribution,numeric}(e1,e2,
withSimplify = getdistrOption("simplifyD"))
\S4method{Maximum}{AcDcLcDistribution,numeric}(e1,e2,
withSimplify = getdistrOption("simplifyD"))
}
\arguments{
\item{e1}{distribution object}
\item{e2}{distribution object or numeric}
\item{\dots}{further arguments (to be able to call various methods with the same
arguments}
\item{withSimplify}{logical; is result to be piped through a call to
\code{\link{simplifyD}}?}
}
\value{the corresponding distribution of the minimum / maximum}
\section{Methods}{\describe{
\item{Minimum}{\code{signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")}:
returns the distribution of \code{min(X1,X2)}, if \code{X1},\code{X2} are independent
and distributed according to \code{e1} and \code{e2} respectively;
the result is again of class \code{"AbscontDistribution"}}
\item{Minimum}{\code{signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution")}:
returns the distribution of \code{min(X1,X2)}, if \code{X1},\code{X2} are independent
and distributed according to \code{e1} and \code{e2} respectively;
the result is again of class \code{"DiscreteDistribution"}}
\item{Minimum}{\code{signature(e1 = "AbscontDistribution", e2 = "Dirac")}:
returns the distribution of \code{min(X1,X2)}, if \code{X1},\code{X2} are
distributed according to \code{e1} and \code{e2} respectively;
the result is of class \code{"UnivarLebDecDistribution"}}
\item{Minimum}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}:
returns the distribution of \code{min(X1,X2)}, if \code{X1},\code{X2} are
distributed according to \code{e1} and \code{e2} respectively;
the result is of class \code{"UnivarLebDecDistribution"}}
\item{Minimum}{\code{signature(e1 = "AcDcLcDistribution", e2 = "numeric")}:
if \code{e2} = \eqn{n}, returns the distribution of \code{min(X1,X2,...,Xn)}, if \code{X1},\code{X2},
..., \code{Xn} are i.i.d. according to \code{e1};
the result is of class \code{"UnivarLebDecDistribution"}}
\item{Maximum}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}:
returns the distribution of \code{max(X1,X2)}, if \code{X1},\code{X2} are
distributed according to \code{e1} and \code{e2} respectively;
translates into \code{-Minimum(-e1,-e2)};
the result is of class \code{"UnivarLebDecDistribution"}}
\item{Maximum}{\code{signature(e1 = "AcDcLcDistribution", e2 = "numeric")}:
if \code{e2} = \eqn{n}, returns the distribution of \code{max(X1,X2,...,Xn)}, if \code{X1},\code{X2},
..., \code{Xn} are i.i.d. according to \code{e1}; translates into
\code{-Minimum(-e1,e2)}; the result is of class \code{"UnivarLebDecDistribution"}}
}}
\seealso{\code{\link{Huberize}}, \code{\link{Truncate}}}
\examples{
## IGNORE_RDIFF_BEGIN
plot(Maximum(Unif(0,1), Minimum(Unif(0,1), Unif(0,1))))
plot(Minimum(Exp(4),4))
## IGNORE_RDIFF_END
\donttest{
## a sometimes lengthy example...
plot(Minimum(Norm(),Pois()))}
}
\keyword{distribution}
\keyword{methods}
\concept{minimum}
\concept{maximum}
|