1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
\name{Norm-class}
\docType{class}
\alias{Norm-class}
\alias{Norm}
\alias{initialize,Norm-method}
\title{Class "Norm"}
\description{ The normal distribution has density
\deqn{
f(x) =
\frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}}{
f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2))
}
where \eqn{\mu}{mu} is the mean of the distribution and
\eqn{\sigma}{sigma} the standard deviation.
C.f. \code{\link[stats:Normal]{rnorm}}
}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{Norm(mean, sd)}.
This object is a normal distribution.
}
\section{Slots}{
\describe{
\item{\code{img}}{Object of class \code{"Reals"}: The domain of this distribution has got dimension 1
and the name "Real Space". }
\item{\code{param}}{Object of class \code{"UniNormParameter"}: the parameter of this distribution (mean and sd),
declared at its instantiation }
\item{\code{r}}{Object of class \code{"function"}: generates random numbers (calls function \code{rnorm})}
\item{\code{d}}{Object of class \code{"function"}: density function (calls function \code{dnorm})}
\item{\code{p}}{Object of class \code{"function"}: cumulative function (calls function \code{pnorm})}
\item{\code{q}}{Object of class \code{"function"}: inverse of the cumulative function (calls function \code{qnorm})}
\item{\code{.withArith}}{logical: used internally to issue warnings as to
interpretation of arithmetics}
\item{\code{.withSim}}{logical: used internally to issue warnings as to
accuracy}
\item{\code{.logExact}}{logical: used internally to flag the case where
there are explicit formulae for the log version of density, cdf, and
quantile function}
\item{\code{.lowerExact}}{logical: used internally to flag the case where
there are explicit formulae for the lower tail version of cdf and quantile
function}
\item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
used internally to avoid unnecessary calculations.}
}
}
\section{Extends}{
Class \code{"AbscontDistribution"}, directly.\cr
Class \code{"UnivariateDistribution"}, by class \code{"AbscontDistribution"}.\cr
Class \code{"Distribution"}, by class \code{"AbscontDistribution"}.
}
\section{Methods}{
\describe{
\item{-}{\code{signature(e1 = "Norm", e2 = "Norm")}}
\item{+}{\code{signature(e1 = "Norm", e2 = "Norm")}:
For the normal distribution the exact convolution formulas are implemented thereby improving the general numerical
approximation.}
\item{*}{\code{signature(e1 = "Norm", e2 = "numeric")}}
\item{+}{\code{signature(e1 = "Norm", e2 = "numeric")}:
For the normal distribution we use its closedness under affine linear transformations.}
\item{initialize}{\code{signature(.Object = "Norm")}: initialize method }
\item{mean}{\code{signature(object = "Norm")}: returns the slot \code{mean} of the parameter of the distribution }
\item{mean<-}{\code{signature(object = "Norm")}: modifies the slot \code{mean} of the parameter of the distribution }
\item{sd}{\code{signature(object = "Norm")}: returns the slot \code{sd} of the parameter of the distribution }
\item{sd<-}{\code{signature(object = "Norm")}: modifies the slot \code{sd} of the parameter of the distribution }
}
further arithmetic methods see \link{operators-methods}
}
\author{
Thomas Stabla \email{statho3@web.de},\cr
Florian Camphausen \email{fcampi@gmx.de},\cr
Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},\cr
Matthias Kohl \email{Matthias.Kohl@stamats.de}}
\seealso{
\code{\link{UniNormParameter-class}}
\code{\link{AbscontDistribution-class}}
\code{\link{Reals-class}}
\code{\link[stats:Normal]{rnorm}}
}
\examples{
N <- Norm(mean=1,sd=1) # N is a normal distribution with mean=1 and sd=1.
r(N)(1) # one random number generated from this distribution, e.g. 2.257783
d(N)(1) # Density of this distribution is 0.3989423 for x=1.
p(N)(1) # Probability that x<1 is 0.5.
q(N)(.1) # Probability that x<-0.2815516 is 0.1.
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
mean(N) # mean of this distribution is 1.
sd(N) <- 2 # sd of this distribution is now 2.
M <- Norm() # M is a normal distribution with mean=0 and sd=1.
O <- M+N # O is a normal distribution with mean=1 (=1+0) and sd=sqrt(5) (=sqrt(2^2+1^2)).
}
\keyword{distribution}
\concept{absolutely continuous distribution}
\concept{Gaussian distribution}
\concept{Normal distribution}
\concept{S4 distribtution class}
\concept{location scale family}
|