File: Norm-class.Rd

package info (click to toggle)
r-cran-distr 2.9.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,344 kB
  • sloc: ansic: 199; sh: 13; makefile: 2
file content (99 lines) | stat: -rw-r--r-- 4,690 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
\name{Norm-class} 
\docType{class}
\alias{Norm-class}
\alias{Norm}
\alias{initialize,Norm-method}

\title{Class "Norm"}
\description{  The normal distribution has density
  \deqn{
    f(x) =
    \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}}{
    f(x) = 1/(sqrt(2 pi) sigma) e^-((x - mu)^2/(2 sigma^2))
  }
  where \eqn{\mu}{mu} is the mean of the distribution and
  \eqn{\sigma}{sigma} the standard deviation.
 C.f. \code{\link[stats:Normal]{rnorm}}
}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{Norm(mean, sd)}.
This object is a normal distribution.
}
\section{Slots}{
  \describe{
    \item{\code{img}}{Object of class \code{"Reals"}: The domain of this distribution has got dimension 1
    and the name "Real Space". }
    \item{\code{param}}{Object of class \code{"UniNormParameter"}: the parameter of this distribution (mean and sd),
     declared at its instantiation }
    \item{\code{r}}{Object of class \code{"function"}: generates random numbers (calls function \code{rnorm})}
    \item{\code{d}}{Object of class \code{"function"}: density function (calls function \code{dnorm})}
    \item{\code{p}}{Object of class \code{"function"}: cumulative function (calls function \code{pnorm})}
    \item{\code{q}}{Object of class \code{"function"}: inverse of the cumulative function (calls function \code{qnorm})}
    \item{\code{.withArith}}{logical: used internally to issue warnings as to 
            interpretation of arithmetics}
    \item{\code{.withSim}}{logical: used internally to issue warnings as to 
          accuracy}
    \item{\code{.logExact}}{logical: used internally to flag the case where 
    there are explicit formulae for the log version of density, cdf, and 
    quantile function}
    \item{\code{.lowerExact}}{logical: used internally to flag the case where 
    there are explicit formulae for the lower tail version of cdf and quantile 
    function}
    \item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
     used internally to avoid unnecessary calculations.}
  }
}
\section{Extends}{
Class \code{"AbscontDistribution"}, directly.\cr
Class \code{"UnivariateDistribution"}, by class \code{"AbscontDistribution"}.\cr
Class \code{"Distribution"}, by class \code{"AbscontDistribution"}.
}
\section{Methods}{
  \describe{
    \item{-}{\code{signature(e1 = "Norm", e2 = "Norm")}}
    \item{+}{\code{signature(e1 = "Norm", e2 = "Norm")}: 
    For the normal distribution the exact convolution formulas are implemented thereby improving the general numerical
    approximation.}
    \item{*}{\code{signature(e1 = "Norm", e2 = "numeric")}}
    \item{+}{\code{signature(e1 = "Norm", e2 = "numeric")}: 
    For the normal distribution we use its closedness under affine linear transformations.}
    \item{initialize}{\code{signature(.Object = "Norm")}: initialize method }
    \item{mean}{\code{signature(object = "Norm")}: returns the slot \code{mean} of the parameter of the distribution }
    \item{mean<-}{\code{signature(object = "Norm")}: modifies the slot \code{mean} of the parameter of the distribution }
    \item{sd}{\code{signature(object = "Norm")}: returns the slot \code{sd} of the parameter of the distribution  }
    \item{sd<-}{\code{signature(object = "Norm")}: modifies the slot \code{sd} of the parameter of the distribution }
  }
  further arithmetic methods see \link{operators-methods}
}

\author{
  Thomas Stabla \email{statho3@web.de},\cr 
  Florian Camphausen \email{fcampi@gmx.de},\cr
  Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},\cr 
  Matthias Kohl \email{Matthias.Kohl@stamats.de}}

\seealso{
\code{\link{UniNormParameter-class}}
\code{\link{AbscontDistribution-class}}
\code{\link{Reals-class}}
\code{\link[stats:Normal]{rnorm}}

}
\examples{
N <- Norm(mean=1,sd=1) # N is a normal distribution with mean=1 and sd=1.
r(N)(1) # one random number generated from this distribution, e.g. 2.257783
d(N)(1) # Density of this distribution is  0.3989423 for x=1.
p(N)(1) # Probability that x<1 is 0.5.
q(N)(.1) # Probability that x<-0.2815516 is 0.1.
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
mean(N) # mean of this distribution is 1.
sd(N) <- 2 # sd of this distribution is now 2.
M <- Norm() # M is a normal distribution with mean=0 and sd=1.
O <- M+N # O is a normal distribution with mean=1 (=1+0) and sd=sqrt(5) (=sqrt(2^2+1^2)).
}
\keyword{distribution}
\concept{absolutely continuous distribution}
\concept{Gaussian distribution}
\concept{Normal distribution}
\concept{S4 distribtution class}
\concept{location scale family}