1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
\name{Unif-class}
\docType{class}
\alias{Unif-class}
\alias{Unif}
\alias{initialize,Unif-method}
\title{Class "Unif"}
\description{
The uniform distribution has density
\deqn{d(x) = \frac{1}{max-min}}{d(x) = 1/(max-min)}
for \eqn{min}, by default \eqn{=0}, \eqn{\le x \le max}, by default \eqn{=1}.
C.f. \code{\link[stats:Uniform]{runif}}
}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{Unif(Min, Max)}.
This object is a uniform distribution.
}
\section{Slots}{
\describe{
\item{\code{img}}{Object of class \code{"Reals"}: The space of the image of this distribution has got dimension 1
and the name "Real Space". }
\item{\code{param}}{Object of class \code{"UnifParameter"}: the parameter of this distribution (Min and Max),
declared at its instantiation }
\item{\code{r}}{Object of class \code{"function"}: generates random numbers (calls function \code{runif})}
\item{\code{d}}{Object of class \code{"function"}: density function (calls function \code{dunif})}
\item{\code{p}}{Object of class \code{"function"}: cumulative function (calls function \code{punif})}
\item{\code{q}}{Object of class \code{"function"}: inverse of the cumulative function (calls function \code{qunif})}
\item{\code{.withArith}}{logical: used internally to issue warnings as to
interpretation of arithmetics}
\item{\code{.withSim}}{logical: used internally to issue warnings as to
accuracy}
\item{\code{.logExact}}{logical: used internally to flag the case where
there are explicit formulae for the log version of density, cdf, and
quantile function}
\item{\code{.lowerExact}}{logical: used internally to flag the case where
there are explicit formulae for the lower tail version of cdf and quantile
function}
\item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
used internally to avoid unnecessary calculations.}
}
}
\section{Extends}{
Class \code{"AbscontDistribution"}, directly.\cr
Class \code{"UnivariateDistribution"}, by class \code{"AbscontDistribution"}.\cr
Class \code{"Distribution"}, by class \code{"AbscontDistribution"}.
}
\section{Is-Relations}{
By means of \code{setIs}, R ``knows'' that a distribution object \code{obj} of class \code{"Unif"} with Min 0 and Max 1 also is
a Beta distribution with parameters \code{shape1 = 1, shape2 = 1, ncp = 0}.
}
\section{Methods}{
\describe{
\item{initialize}{\code{signature(.Object = "Unif")}: initialize method }
\item{Min}{\code{signature(object = "Unif")}: returns the slot \code{Min} of the parameter of the distribution }
\item{Min<-}{\code{signature(object = "Unif")}: modifies the slot \code{Min} of the parameter of the distribution }
\item{Max}{\code{signature(object = "Unif")}: returns the slot \code{Max} of the parameter of the distribution }
\item{Max<-}{\code{signature(object = "Unif")}: modifies the slot \code{Max} of the parameter of the distribution }
\item{*}{\code{signature(e1 = "Unif", e2 = "numeric")}: multiplication of this uniform distribution
by an object of class `numeric'}
\item{+}{\code{signature(e1 = "Unif", e2 = "numeric")}: addition of this uniform distribution
to an object of class `numeric'}
}}
\author{
Thomas Stabla \email{statho3@web.de},\cr
Florian Camphausen \email{fcampi@gmx.de},\cr
Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},\cr
Matthias Kohl \email{Matthias.Kohl@stamats.de}}
\seealso{
\code{\link{UnifParameter-class}}
\code{\link{AbscontDistribution-class}}
\code{\link{Reals-class}}
\code{\link[stats:Uniform]{runif}}
}
\examples{
U <- Unif(Min=0,Max=2) # U is a uniform distribution with Min=0 and Max=2.
r(U)(1) # one random number generated from this distribution, e.g. 1.984357
d(U)(1) # Density of this distribution is 0.5 for x=1.
p(U)(1) # Probability that x<1 is 0.5.
q(U)(.1) # Probability that x<0.2 is 0.1.
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
Min(U) # Min of this distribution is 0.
Min(U) <- 1 # Min of this distribution is now 1.
Min(U) # Min of this distribution is 1.
Min(U) <- 0
is(U/2,"Beta") # yes
V <- U/2; as(V,"Beta")
}
\keyword{distribution}
\concept{absolutely continuous distribution}
\concept{Uniform distribution}
\concept{S4 distribution class}
\concept{generating function}
|