File: UnivarLebDecDistribution-class.Rd

package info (click to toggle)
r-cran-distr 2.9.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,344 kB
  • sloc: ansic: 199; sh: 13; makefile: 2
file content (284 lines) | stat: -rw-r--r-- 15,784 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
\name{UnivarLebDecDistribution-class}
\docType{class}
\alias{UnivarLebDecDistribution-class}
\alias{AffLinUnivarLebDecDistribution-class}
\alias{AcDcLcDistribution-class}
\alias{acPart}
\alias{discretePart}
\alias{acPart<-}
\alias{discretePart<-}
\alias{acPart-methods}
\alias{discretePart-methods}
\alias{acPart<--methods}
\alias{discretePart<--methods}
\alias{acPart,UnivarLebDecDistribution-method}
\alias{discretePart,UnivarLebDecDistribution-method}
\alias{acPart<-,UnivarLebDecDistribution-method}
\alias{discretePart<-,UnivarLebDecDistribution-method}
\alias{acWeight}
\alias{discreteWeight}
\alias{acWeight<-}
\alias{discreteWeight<-}
\alias{acWeight-methods}
\alias{discreteWeight-methods}
\alias{acWeight<--methods}
\alias{discreteWeight<--methods}
\alias{acWeight,UnivarLebDecDistribution-method}
\alias{discreteWeight,UnivarLebDecDistribution-method}
\alias{acWeight<-,UnivarLebDecDistribution-method}
\alias{discreteWeight<-,UnivarLebDecDistribution-method}
\alias{p.discrete,UnivarLebDecDistribution-method}
\alias{d.discrete,UnivarLebDecDistribution-method}
\alias{q.discrete,UnivarLebDecDistribution-method}
\alias{r.discrete,UnivarLebDecDistribution-method}
\alias{p.ac,UnivarLebDecDistribution-method}
\alias{d.ac,UnivarLebDecDistribution-method}
\alias{q.ac,UnivarLebDecDistribution-method}
\alias{r.ac,UnivarLebDecDistribution-method}
\alias{p.discrete-methods}
\alias{d.discrete-methods}
\alias{q.discrete-methods}
\alias{r.discrete-methods}
\alias{p.ac-methods}
\alias{d.ac-methods}
\alias{q.ac-methods}
\alias{r.ac-methods}
\alias{p.discrete}
\alias{d.discrete}
\alias{q.discrete}
\alias{r.discrete}
\alias{p.ac}
\alias{d.ac}
\alias{q.ac}
\alias{r.ac}
\alias{coerce,AbscontDistribution,UnivarLebDecDistribution-method}
\alias{coerce,DiscreteDistribution,UnivarLebDecDistribution-method}
\alias{coerce,AffLinUnivarLebDecDistribution,UnivarLebDecDistribution-method}
\alias{abs,UnivarLebDecDistribution-method}
\alias{log,UnivarLebDecDistribution-method}
\alias{log10,UnivarLebDecDistribution-method}
\alias{Math,UnivarLebDecDistribution-method}
\alias{^,AcDcLcDistribution,Dirac-method}
\alias{exp,UnivarLebDecDistribution-method}
\alias{sign,UnivarLebDecDistribution-method}
\alias{sign,AcDcLcDistribution-method}
\alias{sqrt,UnivarLebDecDistribution-method}
\alias{sqrt,AcDcLcDistribution-method}

\title{Class "UnivarLebDecDistribution"}
\description{\code{UnivarLebDecDistribution}-class is a class to formalize
                   a Lebesgue decomposed distribution with a discrete and an
                   absolutely continuous part; it is a subclass to
                   class \code{UnivarMixingDistribution}.}
\section{Objects from the Class}{
Objects can be created by calls of the form
\code{new("UnivarLebDecDistribution", ...)}.
  More frequently they are created via the generating function
  \code{\link{UnivarLebDecDistribution}}.
}
\section{Slots}{
  \describe{
    \item{\code{mixCoeff}}{Object of class \code{"numeric"}: a vector of length
            2 of probabilities for the respective a.c. and discrete part of
            the object}
    \item{\code{mixDistr}}{Object of class \code{"UnivarDistrList"}: a list of
    univariate distributions containing the a.c. and discrete components; must be of
    length 2; the first component must be of class \code{"AbscontDistribution"},
    the second of class \code{"DiscreteDistribution"}.}
    \item{\code{img}}{Object of class \code{"Reals"}: the space of the image of this distribution which has dimension 1
    and the name "Real Space" }
    \item{\code{param}}{Object of class \code{"Parameter"}: the parameter of this distribution, having only the
    slot name "Parameter of a discrete distribution" }
    \item{\code{r}}{Object of class \code{"function"}: generates random numbers}
    \item{\code{d}}{fixed to \code{NULL}}
    \item{\code{p}}{Object of class \code{"function"}: cumulative distribution function}
    \item{\code{q}}{Object of class \code{"function"}: quantile function}
    \item{\code{.withArith}}{logical: used internally to issue warnings as to 
            interpretation of arithmetics}
    \item{\code{.withSim}}{logical: used internally to issue warnings as to 
          accuracy}
    \item{\code{.logExact}}{logical: used internally to flag the case where 
    there are explicit formulae for the log version of density, cdf, and 
    quantile function}
    \item{\code{.lowerExact}}{logical: used internally to flag the case where 
    there are explicit formulae for the lower tail version of cdf and quantile 
    function}
    \item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
     used internally to avoid unnecessary calculations.}
    \item{\code{support}}{numeric vector --- the support slot of the discrete part}
    \item{\code{gaps}}{(numeric) matrix or \code{NULL}; --- the gaps slot of 
                         the absolutely continuous part}
  }
}
\section{Extends}{
Class \code{"UnivarMixingDistribution"}, directly;
class \code{"UnivariateDistribution"} by class \code{"UnivarMixingDistribution"}
class \code{"Distribution"} by class \code{"UnivariateDistribution"}.
}
\section{Methods}{
  \describe{
    \item{show}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{plot}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{acPart}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{acPart<-}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{discretePart}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{discretePart<-}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{acWeight}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{acWeight<-}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{discreteWeight}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{discreteWeight<-}{\code{signature(object = "UnivarLebDecDistribution")}}
    \item{p.ac}{\code{signature(object = "UnivarLebDecDistribution")} accessor to 
                slot \code{p} of \code{acPart(object)}, possibly weighted 
                by \code{acWeight(object)}; 
                it has an extra argument \code{CondOrAbs} with default value 
                \code{"cond"} which if it does not partially match 
               (by \code{\link{pmatch}}) \code{"abs"}, returns exactly
               slot \code{p} of \code{acPart(object)} else weighted by 
               \code{acWeight(object)}.}
    \item{d.ac}{\code{signature(object = "UnivarLebDecDistribution")}accessor to 
                slot \code{d} of the absolutely continuous part of
                the distribution, possibly weighted by \code{acWeight(object)}; 
                it has an extra argument \code{CondOrAbs} which acts as the one
                in \code{p.ac}.}
    \item{q.ac}{\code{signature(object = "UnivarLebDecDistribution")} accessor to 
                slot \code{q} of \code{acPart(object)}.}
    \item{r.ac}{\code{signature(object = "UnivarLebDecDistribution")} accessor to 
                slot \code{q} of \code{acPart(object)}.}
    \item{p.discrete}{\code{signature(object = "UnivarLebDecDistribution")} 
                      accessor to slot \code{p} of \code{discretePart(object)}, 
                      possibly weighted by \code{discreteWeight(object)}; 
                      it has an extra argument \code{CondOrAbs} which acts 
                      as the one in \code{p.ac}.}
    \item{d.discrete}{\code{signature(object = "UnivarLebDecDistribution")} 
                      accessor to slot \code{d} of \code{discretePart(object)}, 
                      possibly weighted by \code{discreteWeight(object)}; 
                      it has an extra argument \code{CondOrAbs} which acts as 
                      the one in \code{p.ac}.}
    \item{q.discrete}{\code{signature(object = "UnivarLebDecDistribution")} 
                      accessor to slot \code{q} of \code{discretePart(object)}.}
    \item{r.discrete}{\code{signature(object = "UnivarLebDecDistribution")} 
                      accessor to slot \code{r} of \code{discretePart(object)}.}
    \item{coerce}{\code{signature(from = "AffLinUnivarLebDecDistribution", to = "UnivarLebDecDistribution")}:
      create a \code{"UnivarLebDecDistribution"} object from a \code{"AffLinUnivarLebDecDistribution"} object}
    \item{coerce}{\code{signature(from = "AbscontDistribution", to = "UnivarLebDecDistribution")}:
      create a \code{"UnivarLebDecDistribution"} object from a \code{"AbscontDistribution"} object}
    \item{coerce}{\code{signature(from = "DiscreteDistribution", to = "UnivarLebDecDistribution")}:
      create a \code{"UnivarLebDecDistribution"} object from a \code{"DiscreteDistribution"} object}
    \item{Math}{\code{signature(x = "UnivarLebDecDistribution")}: application of a mathematical function, e.g. \code{sin} or \code{tan} to this discrete distribution
    \itemize{
      \item \code{abs}: \code{signature(x = "UnivarLebDecDistribution")}:  exact image distribution of \code{abs(x)}.
      \item \code{exp}: \code{signature(x = "UnivarLebDecDistribution")}:  exact image distribution of \code{exp(x)}.
      \item \code{sign}: \code{signature(x = "UnivarLebDecDistribution")}:  exact image distribution of \code{sign(x)}.
      \item \code{sign}: \code{signature(x = "AcDcLcDistribution")}:  exact image distribution of \code{sign(x)}.
      \item \code{sqrt}: \code{signature(x = "AcDcLcDistribution")}:  exact image distribution of \code{sqrt(x)}.
      \item \code{log}: \code{signature(x = "UnivarLebDecDistribution")}:  (with optional further argument \code{base}, defaulting to \code{exp(1)}) exact image distribution of \code{log(x)}.
      \item \code{log10}: \code{signature(x = "UnivarLebDecDistribution")}:  exact image distribution of \code{log10(x)}.
      \item \code{sqrt}: \code{signature(x = "UnivarLebDecDistribution")}:  exact 
          image distribution of \code{sqrt(x)}.
      \item \code{sqrt}: \code{signature(x = "AcDcLcDistribution")}:  exact image distribution of \code{sqrt(x)}.
    }}
    \item{-}{\code{signature(e1 = "UnivarLebDecDistribution")}: application of `-' to this distribution}
    \item{*}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: multiplication of this distribution
    by an object of class `numeric'}
    \item{/}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: division of this distribution
    by an object of class `numeric'}
    \item{+}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: addition of this distribution
    to an object of class `numeric'}
    \item{-}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: subtraction of an object of class `numeric'
    from this distribution }
    \item{*}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}: multiplication of this distribution
    by an object of class `numeric'}
    \item{+}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}: addition of this distribution
    to an object of class `numeric'}
    \item{-}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}: subtraction of this distribution
    from an object of class `numeric'}
    \item{+}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution")}: Convolution of two Lebesgue
    decomposed distributions. Result is again of class \code{"UnivarLebDecDistribution"}, but if option
    \code{getdistrOption("withSimplify")} is \code{TRUE} it is piped through a call to \code{\link{simplifyD}},
    hence may also be of class \code{AbscontDistribution} or \code{DiscreteDistribution}}.
    \item{-}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution")}: Convolution of two Lebesgue
    decomposed distributions. The same applies as for the preceding item.}
  }
}
\section{Internal subclass "AffLinUnivarLebDecDistribution"}{
To enhance accuracy of several functionals on distributions,
  mainly from package \pkg{distrEx},  
  there is an internally used (but exported) subclass 
  \code{"AffLinUnivarLebDecDistribution"} which has extra slots 
  \code{a}, \code{b} (both of class \code{"numeric"}),  and \code{X0} 
  (of class \code{"UnivarLebDecDistribution"}), to capture the fact 
  that the object has the same distribution as \code{a * X0 + b}. This is 
  the class of the return value of methods 
  \describe{
    \item{-}{\code{signature(e1 = "UnivarLebDecDistribution")}}
    \item{*}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
    \item{/}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
    \item{+}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
    \item{-}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
    \item{*}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}}
    \item{+}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}}
    \item{-}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}}
    \item{-}{\code{signature(e1 = "AffLinUnivarLebDecDistribution")}}
    \item{*}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
    \item{/}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
    \item{+}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
    \item{-}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
    \item{*}{\code{signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")}}
    \item{+}{\code{signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")}}
    \item{-}{\code{signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")}}
  }
  There also is a class union of \code{"AffLinAbscontDistribution"},
  \code{"AffLinDiscreteDistribution"}, \code{"AffLinUnivarLebDecDistribution"}
  and called \code{"AffLinDistribution"}
  which is used for functionals.
}

\section{Internal virtual superclass "AcDcLcDistribution"}{
As many operations should be valid no matter whether the operands
are of class \code{"AbscontDistribution"},
  \code{"DiscreteDistribution"}, or \code{"UnivarLebDecDistribution"},
there is a class union of these classes called \code{"AcDcLcDistribution"};
in particular methods for \code{"*"}, \code{"/"}, 
\code{"^"} (see \link{operators-methods}) and methods
\code{\link{Minimum}}, \code{Maximum}, \code{\link{Truncate}}, and
 \code{\link{Huberize}}, and \code{\link{convpow}} are defined for this 
 class union.   
}
\author{
  Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de}
  }

\seealso{
\code{\link{Parameter-class}}
\code{\link{UnivarMixingDistribution-class}}
\code{\link{DiscreteDistribution-class}}
\code{\link{AbscontDistribution-class}}
\code{\link{simplifyD}}
\code{\link{flat.LCD}}
}
\examples{
wg <- flat.mix(UnivarMixingDistribution(Unif(0,1),Unif(4,5),
               withSimplify=FALSE))
myLC <- UnivarLebDecDistribution(discretePart=Binom(3,.3), acPart = wg,
          discreteWeight=.2)
myLC
p(myLC)(0.3)
r(myLC)(30)
q(myLC)(0.9)
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
acPart(myLC)
plot(myLC)
d.discrete(myLC)(2)
p.ac(myLC)(0)
acWeight(myLC)
plot(acPart(myLC))
plot(discretePart(myLC))
gaps(myLC)
support(myLC)
plot(as(Norm(),"UnivarLebDecDistribution"))
}
\keyword{distribution}
\concept{Lebesgue decomposed distribution}
\concept{absolutely continuous distribution}
\concept{discrete distribution}
\concept{S4 distribution class}