1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
\name{UnivarLebDecDistribution-class}
\docType{class}
\alias{UnivarLebDecDistribution-class}
\alias{AffLinUnivarLebDecDistribution-class}
\alias{AcDcLcDistribution-class}
\alias{acPart}
\alias{discretePart}
\alias{acPart<-}
\alias{discretePart<-}
\alias{acPart-methods}
\alias{discretePart-methods}
\alias{acPart<--methods}
\alias{discretePart<--methods}
\alias{acPart,UnivarLebDecDistribution-method}
\alias{discretePart,UnivarLebDecDistribution-method}
\alias{acPart<-,UnivarLebDecDistribution-method}
\alias{discretePart<-,UnivarLebDecDistribution-method}
\alias{acWeight}
\alias{discreteWeight}
\alias{acWeight<-}
\alias{discreteWeight<-}
\alias{acWeight-methods}
\alias{discreteWeight-methods}
\alias{acWeight<--methods}
\alias{discreteWeight<--methods}
\alias{acWeight,UnivarLebDecDistribution-method}
\alias{discreteWeight,UnivarLebDecDistribution-method}
\alias{acWeight<-,UnivarLebDecDistribution-method}
\alias{discreteWeight<-,UnivarLebDecDistribution-method}
\alias{p.discrete,UnivarLebDecDistribution-method}
\alias{d.discrete,UnivarLebDecDistribution-method}
\alias{q.discrete,UnivarLebDecDistribution-method}
\alias{r.discrete,UnivarLebDecDistribution-method}
\alias{p.ac,UnivarLebDecDistribution-method}
\alias{d.ac,UnivarLebDecDistribution-method}
\alias{q.ac,UnivarLebDecDistribution-method}
\alias{r.ac,UnivarLebDecDistribution-method}
\alias{p.discrete-methods}
\alias{d.discrete-methods}
\alias{q.discrete-methods}
\alias{r.discrete-methods}
\alias{p.ac-methods}
\alias{d.ac-methods}
\alias{q.ac-methods}
\alias{r.ac-methods}
\alias{p.discrete}
\alias{d.discrete}
\alias{q.discrete}
\alias{r.discrete}
\alias{p.ac}
\alias{d.ac}
\alias{q.ac}
\alias{r.ac}
\alias{coerce,AbscontDistribution,UnivarLebDecDistribution-method}
\alias{coerce,DiscreteDistribution,UnivarLebDecDistribution-method}
\alias{coerce,AffLinUnivarLebDecDistribution,UnivarLebDecDistribution-method}
\alias{abs,UnivarLebDecDistribution-method}
\alias{log,UnivarLebDecDistribution-method}
\alias{log10,UnivarLebDecDistribution-method}
\alias{Math,UnivarLebDecDistribution-method}
\alias{^,AcDcLcDistribution,Dirac-method}
\alias{exp,UnivarLebDecDistribution-method}
\alias{sign,UnivarLebDecDistribution-method}
\alias{sign,AcDcLcDistribution-method}
\alias{sqrt,UnivarLebDecDistribution-method}
\alias{sqrt,AcDcLcDistribution-method}
\title{Class "UnivarLebDecDistribution"}
\description{\code{UnivarLebDecDistribution}-class is a class to formalize
a Lebesgue decomposed distribution with a discrete and an
absolutely continuous part; it is a subclass to
class \code{UnivarMixingDistribution}.}
\section{Objects from the Class}{
Objects can be created by calls of the form
\code{new("UnivarLebDecDistribution", ...)}.
More frequently they are created via the generating function
\code{\link{UnivarLebDecDistribution}}.
}
\section{Slots}{
\describe{
\item{\code{mixCoeff}}{Object of class \code{"numeric"}: a vector of length
2 of probabilities for the respective a.c. and discrete part of
the object}
\item{\code{mixDistr}}{Object of class \code{"UnivarDistrList"}: a list of
univariate distributions containing the a.c. and discrete components; must be of
length 2; the first component must be of class \code{"AbscontDistribution"},
the second of class \code{"DiscreteDistribution"}.}
\item{\code{img}}{Object of class \code{"Reals"}: the space of the image of this distribution which has dimension 1
and the name "Real Space" }
\item{\code{param}}{Object of class \code{"Parameter"}: the parameter of this distribution, having only the
slot name "Parameter of a discrete distribution" }
\item{\code{r}}{Object of class \code{"function"}: generates random numbers}
\item{\code{d}}{fixed to \code{NULL}}
\item{\code{p}}{Object of class \code{"function"}: cumulative distribution function}
\item{\code{q}}{Object of class \code{"function"}: quantile function}
\item{\code{.withArith}}{logical: used internally to issue warnings as to
interpretation of arithmetics}
\item{\code{.withSim}}{logical: used internally to issue warnings as to
accuracy}
\item{\code{.logExact}}{logical: used internally to flag the case where
there are explicit formulae for the log version of density, cdf, and
quantile function}
\item{\code{.lowerExact}}{logical: used internally to flag the case where
there are explicit formulae for the lower tail version of cdf and quantile
function}
\item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
used internally to avoid unnecessary calculations.}
\item{\code{support}}{numeric vector --- the support slot of the discrete part}
\item{\code{gaps}}{(numeric) matrix or \code{NULL}; --- the gaps slot of
the absolutely continuous part}
}
}
\section{Extends}{
Class \code{"UnivarMixingDistribution"}, directly;
class \code{"UnivariateDistribution"} by class \code{"UnivarMixingDistribution"}
class \code{"Distribution"} by class \code{"UnivariateDistribution"}.
}
\section{Methods}{
\describe{
\item{show}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{plot}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{acPart}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{acPart<-}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{discretePart}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{discretePart<-}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{acWeight}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{acWeight<-}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{discreteWeight}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{discreteWeight<-}{\code{signature(object = "UnivarLebDecDistribution")}}
\item{p.ac}{\code{signature(object = "UnivarLebDecDistribution")} accessor to
slot \code{p} of \code{acPart(object)}, possibly weighted
by \code{acWeight(object)};
it has an extra argument \code{CondOrAbs} with default value
\code{"cond"} which if it does not partially match
(by \code{\link{pmatch}}) \code{"abs"}, returns exactly
slot \code{p} of \code{acPart(object)} else weighted by
\code{acWeight(object)}.}
\item{d.ac}{\code{signature(object = "UnivarLebDecDistribution")}accessor to
slot \code{d} of the absolutely continuous part of
the distribution, possibly weighted by \code{acWeight(object)};
it has an extra argument \code{CondOrAbs} which acts as the one
in \code{p.ac}.}
\item{q.ac}{\code{signature(object = "UnivarLebDecDistribution")} accessor to
slot \code{q} of \code{acPart(object)}.}
\item{r.ac}{\code{signature(object = "UnivarLebDecDistribution")} accessor to
slot \code{q} of \code{acPart(object)}.}
\item{p.discrete}{\code{signature(object = "UnivarLebDecDistribution")}
accessor to slot \code{p} of \code{discretePart(object)},
possibly weighted by \code{discreteWeight(object)};
it has an extra argument \code{CondOrAbs} which acts
as the one in \code{p.ac}.}
\item{d.discrete}{\code{signature(object = "UnivarLebDecDistribution")}
accessor to slot \code{d} of \code{discretePart(object)},
possibly weighted by \code{discreteWeight(object)};
it has an extra argument \code{CondOrAbs} which acts as
the one in \code{p.ac}.}
\item{q.discrete}{\code{signature(object = "UnivarLebDecDistribution")}
accessor to slot \code{q} of \code{discretePart(object)}.}
\item{r.discrete}{\code{signature(object = "UnivarLebDecDistribution")}
accessor to slot \code{r} of \code{discretePart(object)}.}
\item{coerce}{\code{signature(from = "AffLinUnivarLebDecDistribution", to = "UnivarLebDecDistribution")}:
create a \code{"UnivarLebDecDistribution"} object from a \code{"AffLinUnivarLebDecDistribution"} object}
\item{coerce}{\code{signature(from = "AbscontDistribution", to = "UnivarLebDecDistribution")}:
create a \code{"UnivarLebDecDistribution"} object from a \code{"AbscontDistribution"} object}
\item{coerce}{\code{signature(from = "DiscreteDistribution", to = "UnivarLebDecDistribution")}:
create a \code{"UnivarLebDecDistribution"} object from a \code{"DiscreteDistribution"} object}
\item{Math}{\code{signature(x = "UnivarLebDecDistribution")}: application of a mathematical function, e.g. \code{sin} or \code{tan} to this discrete distribution
\itemize{
\item \code{abs}: \code{signature(x = "UnivarLebDecDistribution")}: exact image distribution of \code{abs(x)}.
\item \code{exp}: \code{signature(x = "UnivarLebDecDistribution")}: exact image distribution of \code{exp(x)}.
\item \code{sign}: \code{signature(x = "UnivarLebDecDistribution")}: exact image distribution of \code{sign(x)}.
\item \code{sign}: \code{signature(x = "AcDcLcDistribution")}: exact image distribution of \code{sign(x)}.
\item \code{sqrt}: \code{signature(x = "AcDcLcDistribution")}: exact image distribution of \code{sqrt(x)}.
\item \code{log}: \code{signature(x = "UnivarLebDecDistribution")}: (with optional further argument \code{base}, defaulting to \code{exp(1)}) exact image distribution of \code{log(x)}.
\item \code{log10}: \code{signature(x = "UnivarLebDecDistribution")}: exact image distribution of \code{log10(x)}.
\item \code{sqrt}: \code{signature(x = "UnivarLebDecDistribution")}: exact
image distribution of \code{sqrt(x)}.
\item \code{sqrt}: \code{signature(x = "AcDcLcDistribution")}: exact image distribution of \code{sqrt(x)}.
}}
\item{-}{\code{signature(e1 = "UnivarLebDecDistribution")}: application of `-' to this distribution}
\item{*}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: multiplication of this distribution
by an object of class `numeric'}
\item{/}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: division of this distribution
by an object of class `numeric'}
\item{+}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: addition of this distribution
to an object of class `numeric'}
\item{-}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}: subtraction of an object of class `numeric'
from this distribution }
\item{*}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}: multiplication of this distribution
by an object of class `numeric'}
\item{+}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}: addition of this distribution
to an object of class `numeric'}
\item{-}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}: subtraction of this distribution
from an object of class `numeric'}
\item{+}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution")}: Convolution of two Lebesgue
decomposed distributions. Result is again of class \code{"UnivarLebDecDistribution"}, but if option
\code{getdistrOption("withSimplify")} is \code{TRUE} it is piped through a call to \code{\link{simplifyD}},
hence may also be of class \code{AbscontDistribution} or \code{DiscreteDistribution}}.
\item{-}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution")}: Convolution of two Lebesgue
decomposed distributions. The same applies as for the preceding item.}
}
}
\section{Internal subclass "AffLinUnivarLebDecDistribution"}{
To enhance accuracy of several functionals on distributions,
mainly from package \pkg{distrEx},
there is an internally used (but exported) subclass
\code{"AffLinUnivarLebDecDistribution"} which has extra slots
\code{a}, \code{b} (both of class \code{"numeric"}), and \code{X0}
(of class \code{"UnivarLebDecDistribution"}), to capture the fact
that the object has the same distribution as \code{a * X0 + b}. This is
the class of the return value of methods
\describe{
\item{-}{\code{signature(e1 = "UnivarLebDecDistribution")}}
\item{*}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
\item{/}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
\item{+}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
\item{-}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")}}
\item{*}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}}
\item{+}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}}
\item{-}{\code{signature(e1 = "numeric", e2 = "UnivarLebDecDistribution")}}
\item{-}{\code{signature(e1 = "AffLinUnivarLebDecDistribution")}}
\item{*}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
\item{/}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
\item{+}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
\item{-}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")}}
\item{*}{\code{signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")}}
\item{+}{\code{signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")}}
\item{-}{\code{signature(e1 = "numeric", e2 = "AffLinUnivarLebDecDistribution")}}
}
There also is a class union of \code{"AffLinAbscontDistribution"},
\code{"AffLinDiscreteDistribution"}, \code{"AffLinUnivarLebDecDistribution"}
and called \code{"AffLinDistribution"}
which is used for functionals.
}
\section{Internal virtual superclass "AcDcLcDistribution"}{
As many operations should be valid no matter whether the operands
are of class \code{"AbscontDistribution"},
\code{"DiscreteDistribution"}, or \code{"UnivarLebDecDistribution"},
there is a class union of these classes called \code{"AcDcLcDistribution"};
in particular methods for \code{"*"}, \code{"/"},
\code{"^"} (see \link{operators-methods}) and methods
\code{\link{Minimum}}, \code{Maximum}, \code{\link{Truncate}}, and
\code{\link{Huberize}}, and \code{\link{convpow}} are defined for this
class union.
}
\author{
Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de}
}
\seealso{
\code{\link{Parameter-class}}
\code{\link{UnivarMixingDistribution-class}}
\code{\link{DiscreteDistribution-class}}
\code{\link{AbscontDistribution-class}}
\code{\link{simplifyD}}
\code{\link{flat.LCD}}
}
\examples{
wg <- flat.mix(UnivarMixingDistribution(Unif(0,1),Unif(4,5),
withSimplify=FALSE))
myLC <- UnivarLebDecDistribution(discretePart=Binom(3,.3), acPart = wg,
discreteWeight=.2)
myLC
p(myLC)(0.3)
r(myLC)(30)
q(myLC)(0.9)
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
acPart(myLC)
plot(myLC)
d.discrete(myLC)(2)
p.ac(myLC)(0)
acWeight(myLC)
plot(acPart(myLC))
plot(discretePart(myLC))
gaps(myLC)
support(myLC)
plot(as(Norm(),"UnivarLebDecDistribution"))
}
\keyword{distribution}
\concept{Lebesgue decomposed distribution}
\concept{absolutely continuous distribution}
\concept{discrete distribution}
\concept{S4 distribution class}
|