1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
\name{Weibull-class}
\docType{class}
\alias{Weibull-class}
\alias{Weibull}
\alias{initialize,Weibull-method}
\title{Class "Weibull"}
\description{ The Weibull distribution with \code{shape} parameter \eqn{a}, by default \eqn{=1}, and
\code{scale} parameter \eqn{\sigma}{b} has density given by, by default \eqn{=1},
\deqn{d(x) = (a/\sigma) {(x/\sigma)}^{a-1} \exp (-{(x/\sigma)}^{a})}{%
d(x) = (a/b) (x/b)^(a-1) exp(- (x/b)^a)}
for \eqn{x > 0}.
C.f. \code{\link[stats:Weibull]{rweibull}}
}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{Weibull(shape, scale)}.
This object is a Weibull distribution.
}
\section{Slots}{
\describe{
\item{\code{img}}{Object of class \code{"Reals"}: The space of the image of this distribution has got dimension 1
and the name "Real Space". }
\item{\code{param}}{Object of class \code{"WeibullParameter"}: the parameter of this distribution (shape and scale),
declared at its instantiation }
\item{\code{r}}{Object of class \code{"function"}: generates random numbers (calls function \code{rweibull})}
\item{\code{d}}{Object of class \code{"function"}: density function (calls function \code{dweibull})}
\item{\code{p}}{Object of class \code{"function"}: cumulative function (calls function \code{pweibull})}
\item{\code{q}}{Object of class \code{"function"}: inverse of the cumulative function (calls function \code{qweibull})}
\item{\code{.withArith}}{logical: used internally to issue warnings as to
interpretation of arithmetics}
\item{\code{.withSim}}{logical: used internally to issue warnings as to
accuracy}
\item{\code{.logExact}}{logical: used internally to flag the case where
there are explicit formulae for the log version of density, cdf, and
quantile function}
\item{\code{.lowerExact}}{logical: used internally to flag the case where
there are explicit formulae for the lower tail version of cdf and quantile
function}
\item{\code{Symmetry}}{object of class \code{"DistributionSymmetry"};
used internally to avoid unnecessary calculations.}
}
}
\section{Extends}{
Class \code{"AbscontDistribution"}, directly.\cr
Class \code{"UnivariateDistribution"}, by class \code{"AbscontDistribution"}.\cr
Class \code{"Distribution"}, by class \code{"AbscontDistribution"}.
}
\section{Methods}{
\describe{
\item{initialize}{\code{signature(.Object = "Weibull")}: initialize method }
\item{scale}{\code{signature(object = "Weibull")}: returns the slot \code{scale} of the parameter of the distribution }
\item{scale<-}{\code{signature(object = "Weibull")}: modifies the slot \code{scale} of the parameter of the distribution }
\item{shape}{\code{signature(object = "Weibull")}: returns the slot \code{shape} of the parameter of the distribution }
\item{shape<-}{\code{signature(object = "Weibull")}: modifies the slot \code{shape} of the parameter of the distribution }
\item{*}{\code{signature(e1 = "Weibull", e2 = "numeric")}:
For the Weibull distribution we use its closedness under positive scaling transformations.}
}
}
\author{
Thomas Stabla \email{statho3@web.de},\cr
Florian Camphausen \email{fcampi@gmx.de},\cr
Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},\cr
Matthias Kohl \email{Matthias.Kohl@stamats.de}}
\note{ The density is \eqn{d(x)=0} for \eqn{x < 0}.\cr
The cumulative is
\eqn{p(x) = 1 - \exp(-{(x/\sigma)}^a)}{p(x) = 1 - exp(- (x/b)^a)},\cr
the mean is \eqn{E(X) = \sigma \Gamma(1 + 1/a)}{E(X) = b Gamma(1 + 1/a)},\cr
and the \eqn{Var(X) = \sigma^2(\Gamma(1 + 2/a)-(\Gamma(1 + 1/a))^2)}{%
Var(X) = b^2 * (gamma(1 + 2/a) - (gamma(1 + 1/a))^2)}.
}
\seealso{
\code{\link{WeibullParameter-class}}
\code{\link{AbscontDistribution-class}}
\code{\link{Reals-class}}
\code{\link[stats:Weibull]{rweibull}}
}
\examples{
W <- Weibull(shape=1,scale=1) # W is a Weibull distribution with shape=1 and scale=1.
r(W)(1) # one random number generated from this distribution, e.g. 0.5204105
d(W)(1) # Density of this distribution is 0.3678794 for x=1.
p(W)(1) # Probability that x<1 is 0.6321206.
q(W)(.1) # Probability that x<0.1053605 is 0.1.
## in RStudio or Jupyter IRKernel, use q.l(.)(.) instead of q(.)(.)
shape(W) # shape of this distribution is 1.
shape(W) <- 2 # shape of this distribution is now 2.
}
\keyword{distribution}
\concept{absolutely continuous distribution}
\concept{Weibull distribution}
\concept{S4 distribution class}
\concept{generating function}
|