1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
\name{internals_for_distr}
\alias{internals_for_distr}
\alias{.is.vector.lattice}
\alias{.is.consistent}
\alias{.isInteger}
\alias{.isNatural}
\alias{.isNatural0}
\alias{.mergegaps}
\alias{.mergegaps2}
\alias{.pmixfun}
\alias{.dmixfun}
\alias{.qmixfun}
\alias{.rmixfun}
\alias{.del0dmixfun}
\alias{.ULC.cast}
\alias{.loupmixfun}
\alias{.make.lattice.es.vector}
\alias{.presubs}
\alias{.inArgs}
\alias{.EuclidAlgo}
\alias{.getCommonWidth}
\alias{.isEqual}
\alias{.isIn}
\alias{.setEqual}
\alias{.isEqual01}
\alias{.makeD}
\alias{.makeP}
\alias{.makeQ}
\alias{.makeDNew}
\alias{.makePNew}
\alias{.makeQNew}
\alias{.makeDd}
\alias{.makePd}
\alias{.makeQd}
\alias{.makeQc}
\alias{.fM2}
\alias{.fM}
\alias{.fm}
\alias{.notwithLArg}
\alias{.multm}
\alias{.plusm}
\alias{.getObjName}
\alias{.discretizeP}
\alias{.expm.d}
\alias{.expm.c}
\alias{.logm.d}
\alias{.logm.c}
\alias{.P2D}
\alias{.P2Q}
\alias{.D2P}
\alias{.Q2P}
\alias{.csimpsum}
\alias{.primefun}
\alias{.IssueWarn}
\alias{.fillList}
\alias{.trunc.up}
\alias{.trunc.low}
\alias{.modifyqgaps}
\alias{.DistrCollapse}
\alias{.convDiscrDiscr}
\alias{.inWithTol}
\alias{.panel.mingle}
\alias{.consolidategaps}
\alias{.List}
\alias{devNew}
\title{Internal functions of package distr}
\description{
These functions are used internally by package distr.}
\usage{
.is.vector.lattice(x)
.is.consistent(lattice, support, eq.space = TRUE)
.make.lattice.es.vector(x)
.inArgs(arg, fct)
.isEqual(p0, p1, tol = min( getdistrOption("TruncQuantile")/2,
.Machine$double.eps^.7))
.isEqual01(x)
.isIn(p0, pmat, tol = min( getdistrOption("TruncQuantile")/2,
.Machine$double.eps^.7
))
.isInteger(x, tol = .Machine$double.eps)
.isNatural(x, tol = .Machine$double.eps)
.isNatural0(x, tol = .Machine$double.eps)
.setEqual(x, y, tol = 1e-7)
.presubs(inp, frompat, topat)
.makeD(object, argList, stand = NULL, fac = NULL)
.makeP(object, argList, sign = TRUE, correct = NULL, fac =
NULL, fac2 = NULL)
.makeQ(object, lastCall, sign = TRUE, Cont = TRUE)
.plusm(e1, e2, Dclass = "DiscreteDistribution")
.multm(e1, e2, Dclass = "DiscreteDistribution")
.notwithLArg(D)
.getObjName(i = 1)
.discretizeP(D, lower, upper, h)
.fm(x,f)
.fM(x,f)
.fM2(x,f)
.makeDd(x,y, yleft, yright)
.makePd(x,y, yleft, yright)
.makeQd(x,y, yleft, yright)
.makeQc(x,y, yleft, yright)
.makeDNew(x, dx, h = NULL, Cont = TRUE, standM = "sum")
.makePNew(x, dx, h = NULL, notwithLLarg = FALSE,
Cont = TRUE, myPf = NULL, pxl = NULL, pxu = NULL)
.makeQNew(x, px.l, px.u, notwithLLarg = FALSE, yL , yR, Cont = TRUE)
.mergegaps(gaps, support)
.mergegaps2(gaps1, gaps2)
.consolidategaps(gaps)
.pmixfun(mixDistr, mixCoeff, leftright = "right")
.dmixfun(mixDistr, mixCoeff, withStand = FALSE, supp = NULL)
.rmixfun(mixDistr, mixCoeff)
.qmixfun(mixDistr, mixCoeff, Cont = TRUE, pnew, gaps = NULL, leftright = "left")
.del0dmixfun(mixDistr)
.loupmixfun(mixDistr)
.ULC.cast(x)
.expm.d(e1)
.expm.c(e1)
.logm.d(e1)
.logm.c(e1)
.P2D (p, xx, ql, qu, ngrid = getdistrOption("DefaultNrGridPoints"))
.P2Q (p, xx, ql,qu, ngrid = getdistrOption("DefaultNrGridPoints"),
qL = -Inf, qU = Inf)
.D2P (d, xx, ql, qu, ngrid = getdistrOption("DefaultNrGridPoints"))
.Q2P (q, ngrid = getdistrOption("DefaultNrGridPoints"))
.csimpsum(fx)
.primefun(f,x, nm = NULL)
.IssueWarn(Arith,Sim)
.List(list0)
.fillList(list0, len=length(list0))
.trunc.up(object, upper)
.trunc.low(object, lower)
.modifyqgaps(pfun, qfun, gaps, leftright = "left")
.DistrCollapse(support, prob, eps = getdistrOption("DistrResolution"))
.EuclidAlgo(n1,n2)
.getCommonWidth(x1,x2, tol=.Machine$double.eps)
.convDiscrDiscr(e1,e2)
.inWithTol(x,y,tol=.Machine$double.eps)
.panel.mingle(dots,element)
devNew(...)
}
\arguments{
\item{x}{a (numeric) vector, or (in case of \code{.ULC.cast}) an object of class \code{"AcDcLcDistribution"}}
\item{y}{a (numeric) vector}
\item{f}{in function \code{.primefun}: a function in one (numeric) argument;
in functions \code{.fm}, \code{.fM}, \code{.fM2} a vector of function evaluations}
\item{lattice}{a lattice (of class \code{Lattice})}
\item{support}{a support vector / support vector of a univariate discrete distribution}
\item{eq.space}{logical: shall we check for the support to be equally spaced?}
\item{arg}{a formal argument as character}
\item{fct}{a function}
\item{p0,p1}{(numeric) vectors}
\item{pmat}{(matrix) a matrix with two columns where row-wise the left column
is smaller than the right one}
\item{tol}{an error tolerance (numeric)}
\item{e1}{a distribution object}
\item{e2}{a numeric}
\item{object}{a distribution object}
\item{argList}{an (unevaluated) list of arguments passed to \code{m(object)}
where \code{m} is in \code{d,p,q}}
\item{stand}{factor for a (Lebesgue) density to integrate to 1}
\item{sign}{the sign of the second operand --- for multiplication at
the moment}
\item{correct}{unevaluated R-code to correct for right-continuity
(for multiplication with negative numerics at the moment)}
\item{fac}{factor to be multiplied with the return value}
\item{fac2}{factor to be added to the return value}
\item{lastCall}{unevaluated R-Code ---gives how the result of a call to
\code{q(e1)} is further transformed}
\item{Cont}{logical: \code{TRUE} if \code{object} is continuous}
\item{Dclass}{character: name of distribution class}
\item{D}{a distribution object}
\item{i}{an integer}
\item{yleft, yright}{extrapolation value beyond left/right endpoint of grid}
\item{h}{numeric: grid width}
\item{standM}{standardization method --- summation or integration}
\item{notwithLLarg}{logical --- can we use \code{log.p}, \code{lower.tail}
arguments for \code{p,q}-methods of first operand?}
\item{dx}{numeric: vector of cell-probabilities for the (discretized)
distribution}
\item{myPf}{function with args \code{x,y, yleft, yright}
(as \code{approxfun}):
if given: replaces \code{approxfun} as interpolation method for
continuos distributions}
\item{pxl,pxu}{numeric: if given vector of (lower/upper) cumulative
probabilities}
\item{yL, yR}{argmin / argmax of p()-method}
\item{inp}{either a language object or a character vector}
\item{frompat}{vector of character strings containing regular expressions (or
character string for \code{fixed = TRUE}) to be matched in the
given character vector. Coerced by \code{as.character} to a
character string if possible; (as argument \code{pattern} in
\code{\link{gsub}} --- but possibly of length >1).}
\item{topat}{ a (vector of) replacement(s) for matched pattern in
\code{.presubs}.
Coerced to character if possible. For \code{fixed = FALSE} this
can include backreferences \code{"\\1"} to \code{"\\9"} to
parenthesized subexpressions of \code{pattern}. For
\code{perl = TRUE} only, it can
also contain \code{"\\U"} or \code{"\\L"} to convert the rest of the
replacement to upper or lower case; (as argument \code{replacement}
in \code{\link{gsub}}--- but possibly of length >1).}
\item{gaps,gaps1,gaps2}{matrices \code{m} with two columns,
such that \code{t(m)}, interpreted as vector, is ordered}
\item{prob}{probability vector for a univariate discrete distribution}
\item{mixDistr}{an object of class \code{UnivarDistrList}}
\item{mixCoeff}{an object of class \code{numeric}; a probability vector}
\item{pnew}{a function \code{function(q, lower.tail = TRUE, log.p = FALSE}
realizing slot \code{p} in a distribution object.}
\item{withStand}{logical; if \code{TRUE} a standardization is made such
that the sum of the values of the result evaluated at argument \code{supp} is 1}
\item{supp}{NULL or \code{numeric}; if \code{withStand} is \code{TRUE} used
to standardize such that the result is a probability density.}
\item{p,pfun}{slot \code{p} of an object of class \code{"AbscontDistribution"}}
\item{d}{slot \code{d} of an object of class \code{"AbscontDistribution"}}
\item{q,qfun}{slot \code{q} of an object of class \code{"AbscontDistribution"}}
\item{xx}{a given grid of x-values for functions \code{p}, \code{d} to be
evaluated at}
\item{ql,qu}{lower and upper \code{getdistrOption("TruncQuantile")}-quantile of
the distribution; also, if argument \code{xx} is missing, left and right endpoint
of a regular grid of \code{ngrid} gridpoints to be used in place of \code{xx}.}
\item{qL,qU}{argmin / argmax of p()-method}
\item{ngrid}{number of gridpoints}
\item{fx}{a vector of function evaluations multiplied by the gridwidth}
\item{nm}{an optional right asymptotic value}
\item{Arith}{logical; slot \code{.withArith} of a distribution object,
or logically-``any'' of these slots in a collection of such objects}
\item{Sim}{logical; slot \code{.withSim} of a distribution object,
or logically-``any'' of these slots in a collection of such objects}
\item{list0}{list, the elements of which are to be copied to a new list using
recycling if necessary}
\item{len}{length of the list to be filled}
\item{lower}{lower truncation point}
\item{upper}{upper truncation point}
\item{leftright}{character; for slot \code{q}: if partially matched to \code{"right"}
function will return the right continuous version, else
the left continuous version; for slot \code{p}: if partially
matched to \code{"left"} the left continuous version, else
the right continuous version;}
\item{n1}{integer argument for \code{.EuclidAlgo}}
\item{n2}{integer argument for \code{.EuclidAlgo}}
\item{x1}{width argument for \code{.getCommonWidth}}
\item{x2}{width argument for \code{.getCommonWidth}}
\item{dots}{the unevaluated \code{\dots} argument}
\item{element}{the name of the item in the unevaluated \code{\dots} argument}
\item{...}{arguments passed through to other functions}
}
\details{
\code{.is.vector.lattice} checks whether a given vector \code{x} is equally
spaced.
\code{.is.consistent} checks whether a given support vector \code{support} is
consistent to a given lattice \code{lattice} --- with or without checking
if \code{support} is equally spaced. \code{.make.lattice.es.vector}
makes an object of class \code{Lattice} out of a given (equally spaced) vector
\code{x}.
\code{.inArgs} checks whether an argument \code{arg} is a formal argument of
\code{fct} --- not vectorized.
\code{.isEqual} checks whether \code{p0} and \code{p1} are equal to given
tolerance.
\code{.isIn} checks whether \code{p0} lies in any of the intervals given by
matrix \code{pmat} to given tolerance.
\code{.isEqual01}(x) checks whether \code{x} is 0 or 1 to given tolerance.
\code{.setEqual} sets all elements of x which are equal to some element of y
up to tolerance tol, to exactly the respective element of y.
\code{.notwithLArg} checks whether object \code{D} was generated by simulations
or if its slots \code{p,q} do not have \code{lower.tail} arguments.
\code{.getObjName} returns the name of the object in the \code{i}th operand.
\code{.discretizeP} discretizes \code{D} to a grid of probabilities from
\code{lower} to \code{upper} with width \code{h}.
\code{.fm}, \code{.fM} return the smallest / biggest value in (0,1) such that
\code{f}(x) is finite; \code{.fM2} is a variant of \code{.fM} using a
\code{lower.tail = FALSE} argument.
\code{.makeD}, \code{.makeP}, \code{.makeQ} generate slots \code{p,d,q} for
binary operations \code{e1 /op/ e2} for a distribution object \code{e1}
and a numeric \code{e2} ---for the moment only \code{/op/}'s
\code{+,-,*,/} are implemented.
\code{.plusm}, \code{.multm} more specifically use \code{.makeD}, \code{.makeP},
\code{.makeQ} to generate slots \code{p,d,q} for \code{+}, \code{*},
respectively.
\code{.makeDd}, \code{.makePd}, \code{.makeQd} provide discrete analogues to
\code{approxfun} for interpolation at non grid-values
\code{.makeQc} is an analogue to \code{makeQd} for absolutely continuous
distributions using \code{approxfun}.
\code{.makeDNew} generates slot \code{d} for a new distribution object.
In case of a discrete distribution it produces a step function with
\code{stepfun} (using \code{.makeDd}) and standardizes to 1 by summation.
In case of a continuous distribution it produces a density function with
\code{approxfun} and standardizes to 1 by integration if the latter fails,
it uses a trapezoid rule / summation for this purpose.
\code{.makePNew} generates slot \code{p} for a new distribution object.
In case of a discrete distribution it produces a step function from
\code{cumsum} applied to \code{dx} ---or from \code{pxl} if this is given, with
\code{stepfun} (using \code{.makePd}).
In case of a continuous distribution it produces a cdf with
\code{approxfun}. In case of \code{RtoDPQ}, \code{approxfun} is replaced by
\code{myPf} which calls \code{ecdf} directly.
\code{.makeQNew} generates slot \code{q} for a new distribution object.
In case of a discrete distribution it produces a step function
(using \code{.makeQd}). Special care is taken for left continuity...
In case of a continuous distribution it produces a quantile function with
\code{approxfun}.
\code{.isInteger}, \code{.isNatural}, and \code{.isNatural0} test for each
coordinate of argument \code{x} whether it
is integer [natural / natural or 0] or not.
\code{.mergegaps} modifies the gaps matrix of an a.c. distribution according to
the support slot of a discrete distribution; if necessary, a gap interval
[a,b] is split into [a,c],[c,b] if \code{a<c<b}.
\code{.mergegaps2} merges two gap matrices of two a.c. distributions \code{X1}
and \code{X2} such that in the intervals of the resulting gap matrix,
neither \code{X1} nor \code{X2} carries mass.
\code{.consolidategaps} consolidates a gap matrix, i.e. joins adjacent
gap intervals.
\code{.pmixfun}, \code{.dmixfun}, \code{.rmixfun}, and \code{.qmixfun}
fill the slots \code{p}, \code{d}, \code{r}, and \code{q}
of a corresponding mixing distribution according to the arguments
in \code{mixDistr}, \code{mixCoeff}.
\code{.loupmixfun} finds commun lower and upper bounds for the support of
the mixing distribution.
\code{.del0dmixfun} sets (if slot \code{d.ac} is not \code{NULL}) the return
value of slot function \code{d.ac} of \code{mixDistr}
for argument \code{0} to \code{0}.
\code{.ULC.cast} coerces an object of class \code{"AcDcLcDistribution"} to
class \code{"UnivarLebDecDistribution"}, using \code{simplifyD}.
\code{.expm.d,.expm.c} for discrete, resp. a.c. argument \code{e1} fill the
slots \code{p}, \code{d}, \code{r}, and \code{q}
of the transformation \code{exp(e1)} exactly.
\code{.logm.d,.logm.c} for discrete, resp. a.c. argument \code{e1} fill the
slots \code{p}, \code{d}, \code{r}, and \code{q}
of the transformation \code{log(e1)} exactly.
For objects of class \code{\link{AbscontDistribution}},
\code{.P2D} and \code{.P2Q} reconstruct function slots \code{d} resp.
\code{q} from function slot \code{p}
by means of function \code{D1ss} from package \pkg{sfsmisc};
and of function \code{.makeQNew}, respectively. The other way round,
\code{.D2P} and \code{.Q2P} reconstruct function slot \code{p} from
from function slots \code{d} resp. \code{q}
by means of function \code{.makePNew} and explicite numeric inversion,
respectively.
\code{.csimpsum} is used internally in \code{.makePNew} to produce
a primitive function out of function evaluations by means of vectorized
Simpson quadrature method, returning already the function values
of the prime function on a grid; it is to mimick the behaviour
of \code{cumsum}. \code{.primefun} is similar but more flexible and
produces the prime function as a function.
\code{.List} checks if argument already is a list, and if so leaves it as
it is, otherwise casts it to a list by a call to \code{list}.
\code{.fillList} fills a new list with the elements of a given list \code{list0}
until length \code{len} is reached using recycling if necessary.
Argument \code{list0} is cast to \code{list} by a call
to \code{.List} if necessary.
\code{.trunc.up}, \code{.trunc.low} provide common routines for
classes \code{DiscreteDistribution} and \code{AbscontDistribution} for
one-sided truncation, using (for slot \code{r}) Peter Dalgaard's clever
log-tricks as indicated in
\url{https://stat.ethz.ch/pipermail/r-help/2008-September/174321.html}.
\code{.modifyqgaps} modifies slot \code{q} for objects of class
\code{AbscontDistribution} in the presence of gaps, i.e.; if slot
\code{gaps} is not \code{NULL}. If argument \code{leftright} does not
partially match \code{"right"} (default) returns the left continuous
version of the quantile function, else the right continuous one.
\code{.EuclidAlgo} computes the greatest common divisor of two integers by
means of the Euclidean algorithm.
\code{.getCommonWidth} for two lattices with widths \code{x1} and \code{x2}
computes the smallest common lattice width for convolution.
\code{.convDiscrDiscr} computes the convolution of two discrete distributions by
brute force.
\code{.inWithTol} works like \code{\%in\%} but with a given tolerance.
\code{.panel.mingle} is used for mingling arguments \code{panel.first},
\code{panel.last} in a plot; it returns the evaluated argument \code{element}
within dots, if it is a symbol; else if it can be interpreted as a call, and if
the top call is \code{list}, it returns a list of the items of the call to \code{list},
unevaluated, and otherwise the unchanged argument.
\code{devNew} opens a new device. This function is for back compatibility
with R versions < 2.8.0. To control the number of opened devices, when
\code{length(dev.list())>20}, in interactive mode we ask the user to shut
some windows until \code{length(dev.list())<=20}; in non-interactive mode
we shut the first 15 open devices (except for the first one) before opening
a new one.
}
\value{
\item{.is.vector.lattice}{\code{logical} (length 1).}
\item{.is.consistent}{\code{logical} (length 1).}
\item{.notwithLArg}{\code{logical} (length 1).}
\item{.make.lattice.es.vector}{an object of class \code{Lattice}.}
\item{.inArgs}{\code{logical} (length 1).}
\item{.isIn, .isEqual,.isEqual01}{vector of \code{logical}.}
\item{.fm,.fM, .fM2}{a \code{numeric} of length 1.}
\item{.plusm,.multm}{an object of class \code{DiscreteDistribution} or
\code{AbscontDistribution} according to argument \code{DClass}.}
\item{.getObjName}{\code{character}.}
\item{.discretizeP}{\code{numeric} --- the probabilities for the grid-values.}
\item{.makeDd,.makePd, .makeQd}{a function with args
\code{x, y, yleft, yright}.}
\item{.makeD,.makeDNew}{a function with args \code{x, log = FALSE}.}
\item{.makeP,.makePNew}{a function with args \code{q, lower.tail = TRUE,
log.p = FALSE}.}
\item{.makeQ,.makeQNew}{a function with args \code{p, lower.tail = TRUE,
log.p = FALSE}.}
\item{.isInteger,.isNatural,.isNatural0}{\code{logical} (same length as argument \code{x}).}
\item{.mergegaps,.mergegaps2}{a \code{gaps}-matrix, i.e.; a matrix \code{m} with two columns,
such that \code{t(m)}, interpreted as vector, is ordered.}
\item{.pmixfun}{slot \code{p} for a mixing distribution, i.e. a function
\code{function(q, lower.tail = TRUE, log.p = FALSE)}, which
is the cdf of the distribution.}
\item{.dmixfun}{slot \code{d} for a mixing distribution, i.e. a function
\code{function(x, log = FALSE)}, which
is the density of the distribution.}
\item{.qmixfun}{slot \code{q} for a mixing distribution, i.e. a function
\code{function(p, lower.tail = TRUE, log.p = FALSE)}, which
is the quantile function of the distribution.}
\item{.rmixfun}{slot \code{r} for a mixing distribution, i.e. a function
\code{function(n)} generating r.v.'s according to the distribution.}
\item{.deldmixfun}{a possibly modified argument \code{mixDistr}.}
\item{.loupmixfun}{a list of four components: \code{qL}, the minimal value of
\code{q(x)(0)}, \code{ql}, the minimal value of
\code{q(x)(getdistrOption("TruncQuantile"))}, \code{qU}, the maximal value of
\code{q(x)(1)}, \code{qu}, the maximal value of
\code{q(x)(getdistrOption("TruncQuantile"), lower.tail = FALSE)},
\code{x} running through the members of \code{mixDistr} in each case.}
\item{.ULC.cast}{an object of class \code{"UnivarLebDecDistribution"}.}
\item{.expm.d,.logm.d}{an object of class \code{"DiscreteDistribution"}.}
\item{.expm.c,.logm.c}{an object of class \code{"AbscontDistribution"}.}
\item{.P2D}{a density \code{d} as function \code{function(x, log = FALSE)}.}
\item{.P2Q}{a quantile function \code{q} as function \code{function(p,
lower.tail = TRUE, log.p = FALSE)}}
\item{.D2P, .Q2P}{a cdf \code{p} as function \code{function(q,
lower.tail = TRUE, log.p = FALSE)}.}
\item{.csimpsum}{a vector of evaluations of the prime function at the grid points.}
\item{.primefun}{the prime function as a function.}
\item{.IssueWarn}{a list with two warnings to be issued each of which may be empty.}
\item{.List}{a list.}
\item{.fillList}{a list.}
\item{.trunc.up,.trunc.low}{a list with elements \code{r,p,d,q} (in this order).}
\item{.DistrCollapse}{upon a suggestion by Jacob van Etten,
\email{jacobvanetten@yahoo.com}: help function to collapse the support
points of a discrete distributions if they are too close to each other;
here argument \code{support} is the (original; already sorted) support
and \code{prob} a corresponding probability vector of same length.
Criterium for collapsing: a distance smaller than argument
\code{eps}.
}
\item{.EuclidAlgo}{returns the greatest common divisor (an integer).}
\item{.getCommonWidth}{returns the smallest common lattice width (a numeric).}
\item{.convDiscrDiscr}{returns the convolution of two discrete distributions.}
\item{.inWithTol}{returns a logical vector of same lenght as \code{x} for the
matches (up to tolerance) with vector \code{y}.}
\item{.panel.mingle}{used for mingling arguments \code{panel.first},
\code{panel.last}; returns the evaluated argument \code{element} within dots,
if it is a symbol; else if it can be interpreted as a call, and if the top
call is \code{list}, it returns a list of the items of the call to \code{list},
unevaluated, and otherwise the unchanged argument.}
\item{devNew}{returns the return value of the device opened,
usually invisible \code{NULL}.}
}
\author{
Peter Ruckdeschel \email{peter.ruckdeschel@uni-oldenburg.de},
Matthias Kohl \email{Matthias.Kohl@stamats.de}
}
\seealso{
\code{\link{AbscontDistribution}},
\code{\link{DiscreteDistribution}},
\code{\link{LatticeDistribution}},
\code{\link{RtoDPQ}},
\code{\link{RtoDPQ.d}},
\code{\link{convpow}},
\code{\link{operators}},
\code{\link{plot-methods}}
\code{\link[grDevices:dev]{dev.new}}
}
\keyword{internal}
\concept{utilities}
|