File: operators-methods.Rd

package info (click to toggle)
r-cran-distr 2.9.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,344 kB
  • sloc: ansic: 199; sh: 13; makefile: 2
file content (351 lines) | stat: -rw-r--r-- 22,810 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
\name{operators-methods}
\docType{methods}

\alias{operators-methods}
\alias{operators}
\alias{-,UnivariateDistribution,missing-method}
\alias{-,LatticeDistribution,missing-method}
\alias{-,Norm,missing-method}
\alias{+,UnivariateDistribution,numeric-method}
\alias{+,AbscontDistribution,numeric-method}
\alias{+,DiscreteDistribution,numeric-method}
\alias{+,LatticeDistribution,numeric-method}
\alias{+,UnivarLebDecDistribution,numeric-method}
\alias{+,AffLinAbscontDistribution,numeric-method}
\alias{+,AffLinDiscreteDistribution,numeric-method}
\alias{+,AffLinLatticeDistribution,numeric-method}
\alias{+,AffLinUnivarLebDecDistribution,numeric-method}
\alias{+,CompoundDistribution,numeric-method}
\alias{+,Cauchy,numeric-method}
\alias{+,Dirac,numeric-method}
\alias{+,Norm,numeric-method}
\alias{+,Unif,numeric-method}
\alias{+,numeric,UnivariateDistribution-method}
\alias{+,numeric,LatticeDistribution-method}
%%\alias{-,UnivariateDistribution,ANY-method}
\alias{-,UnivariateDistribution,numeric-method}
\alias{-,UnivariateDistribution,UnivariateDistribution-method}
\alias{-,LatticeDistribution,numeric-method}
\alias{-,LatticeDistribution,LatticeDistribution-method}
\alias{-,LatticeDistribution,UnivariateDistribution-method}
\alias{-,UnivariateDistribution,LatticeDistribution-method}
\alias{-,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{-,numeric,UnivariateDistribution-method}
\alias{-,numeric,LatticeDistribution-method}
\alias{*,UnivariateDistribution,numeric-method}
\alias{*,AbscontDistribution,numeric-method}
\alias{*,DiscreteDistribution,numeric-method}
\alias{*,LatticeDistribution,numeric-method}
\alias{*,UnivarLebDecDistribution,numeric-method}
\alias{*,CompoundDistribution,numeric-method}
\alias{*,AffLinAbscontDistribution,numeric-method}
\alias{*,AffLinDiscreteDistribution,numeric-method}
\alias{*,AffLinLatticeDistribution,numeric-method}
\alias{*,AffLinUnivarLebDecDistribution,numeric-method}
\alias{*,DExp,numeric-method}
\alias{*,Exp,numeric-method}
\alias{*,ExpOrGammaOrChisq,numeric-method}
\alias{*,Weibull,numeric-method}
\alias{*,Cauchy,numeric-method}
\alias{*,Dirac,numeric-method}
\alias{*,Norm,numeric-method}
\alias{*,Logis,numeric-method}
\alias{*,Lnorm,numeric-method}
\alias{*,Unif,numeric-method}
\alias{*,numeric,UnivariateDistribution-method}
\alias{*,numeric,LatticeDistribution-method}
\alias{/,UnivariateDistribution,numeric-method}
\alias{/,LatticeDistribution,numeric-method}
\alias{+,UnivariateDistribution,UnivariateDistribution-method}
\alias{+,AbscontDistribution,AbscontDistribution-method}
\alias{+,AbscontDistribution,DiscreteDistribution-method}
\alias{+,DiscreteDistribution,AbscontDistribution-method}
\alias{+,DiscreteDistribution,DiscreteDistribution-method}
\alias{+,LatticeDistribution,DiscreteDistribution-method}
\alias{+,LatticeDistribution,LatticeDistribution-method}
\alias{+,UnivarLebDecDistribution,UnivarLebDecDistribution-method}
\alias{+,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{+,Binom,Binom-method}
\alias{+,Cauchy,Cauchy-method}
\alias{+,Chisq,Chisq-method}
\alias{+,Dirac,Dirac-method}
\alias{+,ExpOrGammaOrChisq,ExpOrGammaOrChisq-method}
\alias{+,Pois,Pois-method}
\alias{+,Nbinom,Nbinom-method}
\alias{+,Norm,Norm-method}
\alias{+,Logis,numeric-method}
\alias{+,Dirac,UnivariateDistribution-method}
\alias{+,Dirac,DiscreteDistribution-method}
\alias{+,UnivariateDistribution,Dirac-method}
\alias{-,numeric,Beta-method}
\alias{-,Dirac,Dirac-method}
\alias{*,Dirac,Dirac-method}
\alias{*,Dirac,UnivariateDistribution-method}
\alias{*,UnivariateDistribution,Dirac-method}
\alias{*,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{/,Dirac,Dirac-method}
\alias{/,numeric,Dirac-method}
\alias{/,numeric,AcDcLcDistribution-method}
\alias{/,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{^,AcDcLcDistribution,numeric-method}
\alias{^,AcDcLcDistribution,Integer-method}
\alias{^,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{^,numeric,AcDcLcDistribution-method}



\title{Methods for operators +,-,*,/,... in Package distr}

\description{Arithmetics and unary mathematical transformations for distributions}

\details{Arithmetics as well as all functions from group \code{Math}, see \code{\link[methods:S4groupGeneric]{Math}}
are provided for distributions; wherever possible exact expressions are used; else 
random variables are generated according to this transformation and subsequently the remaining
slots filled by \code{\link{RtoDPQ}}, \code{\link{RtoDPQ.d}}}

\section{Methods}{\describe{
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2 = "missing")} unary operator; result again of class \code{"UnivariateDistribution"}; exact}
\item{\code{-}}{\code{signature(e1 = "Norm", e2 = "missing")} unary operator; result again of \code{"Norm"}; exact}
\item{\code{+}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} result again of class \code{"UnivariateDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")} result of 
 class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "DiscreteDistribution", e2 = "numeric")} result of 
 class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")} result  of 
 class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")} result of 
 class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "CompoundDistribution", e2 = "numeric")} result of 
 class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")} result again of 
 class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")} result again of 
 class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")} result again of 
 class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")} result of 
 class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "Cauchy", e2 = "numeric")} result again of class \code{"Cauchy"}; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "numeric")} result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "Norm", e2 = "numeric")} result again of class \code{"Norm"}; exact}
\item{\code{+}}{\code{signature(e1 = "Unif", e2 = "numeric")} result again of class \code{"Unif"}; exact}
\item{\code{+}}{\code{signature(e1 = "Logis", e2 = "numeric")}  result again of class \code{"Logis"}; exact}
\item{\code{+}}{\code{signature(e1 = "numeric", e2 = "UnivariateDistribution")} is translated to  
         \code{signature(e1 = "UnivariateDistribution", e2 = "numeric")}; exact}
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2= "ANY")};exact}
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} is translated to 
 \code{e1 + (-e2)}; exact}
\item{\code{-}}{\code{signature(e1 = "numeric", e2 = "UnivariateDistribution")} is translated to \code{(-e1) + e2}; exact}
\item{\code{-}}{\code{signature(e1 = "numeric", e2 = "Beta")} if \code{ncp(e2)==0} and \code{e1 == 1},
an exact (central) \code{Beta(shape1 = shape2(e2), shape2 = shape1(e2))} is returned, else
the default method is used; exact}
\item{\code{*}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} result again of class \code{"UnivariateDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")} result of 
 class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "DiscreteDistribution", e2 = "numeric")} result of 
 class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")} result  of 
 class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")} result of 
 class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "CompoundDistribution", e2 = "numeric")} result of 
 class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")} result again of 
 class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")} result again of 
 class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")} result again of 
 class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")} result of 
 class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "DExp", e2 = "numeric")} if \code{abs(e2)>0} result again of class \code{"DExp"}; exact}
\item{\code{*}}{\code{signature(e1 = "Exp", e2 = "numeric")} if \code{e2>0} result again of class \code{"Exp"}; exact}
\item{\code{*}}{\code{signature(e1 = "ExpOrGammaOrChisq", e2 = "numeric")} if \code{e1} is a Gamma distribution and \code{e2>0} 
                                                                    result of class \code{"Gammad"}; exact}
\item{\code{*}}{\code{signature(e1 = "Weibull", e2 = "numeric")} if \code{e2>0} 
                                                                    result of class \code{"Weibull"}; exact}
\item{\code{*}}{\code{signature(e1 = "Cauchy", e2 = "numeric")}  if \code{abs(e2)>0} result again of class \code{"Cauchy"}; exact}
\item{\code{*}}{\code{signature(e1 = "Dirac", e2 = "numeric")}  result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "Norm", e2 = "numeric")}  if \code{abs(e2)>0} result again of class \code{"Norm"}; exact}
\item{\code{*}}{\code{signature(e1 = "Unif", e2 = "numeric")}  if \code{abs(e2)>0} result again of class \code{"Unif"}; exact}
\item{\code{*}}{\code{signature(e1 = "Logis", e2 = "numeric")}  if \code{e2>0} result again of class \code{"Logis"}; exact}
\item{\code{*}}{\code{signature(e1 = "Lnorm", e2 = "numeric")}  if \code{e2>0} result again of class \code{"Lnorm"}; exact}
\item{\code{*}}{\code{signature(e1 = "numeric", e2 = "UnivariateDistribution")} is translated to 
         \code{signature(e1 = "UnivariateDistribution", e2 = "numeric")}; exact}
\item{\code{/}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} is translated to \code{e1 * (1/e2)}; exact}
\item{\code{+}}{\code{signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution")}  result again of class 
         \code{"UnivariateDistribution"}; is generated by simulations}
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution")} is translated to \code{(-e1) + (-e2)}; 
          result again of class   \code{"UnivariateDistribution"}; is generated by simulations}
\item{\code{-}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: both operands are coerced
                to class \code{"UnivarLebDecDistribution"} and the corresponding method is used.
                }
\item{\code{+}}{\code{signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")} assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"AbscontDistribution"}; is generated by FFT}
\item{\code{+}}{\code{signature(e1 = "AbscontDistribution", e2 = "DiscreteDistribution")} assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"AbscontDistribution"}; is generated by FFT}
\item{\code{+}}{\code{signature(e1 = "DiscreteDistribution", e2 = "AbscontDistribution")} assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"AbscontDistribution"}; is generated by FFT}
\item{\code{+}}{\code{signature(e1 = "LatticeDistribution", e2 = "LatticeDistribution")} assumes \code{e1}, \code{e2} independent; 
if the larger lattice-width is an integer multiple of the smaller(in abs. value) one: result again of class 
         \code{"LatticeDistribution"}; is generated by D/FFT}
\item{\code{+}}{\code{signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution")} assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"DiscreteDistribution"}; is generated by explicite convolution}
\item{\code{+}}{\code{signature(e1 = "LatticeDistribution", e2 = "DiscreteDistribution")} assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"DiscreteDistribution"}; is generated by explicite convolution}
\item{\code{+}}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution")} assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"UnivarLebDecDistribution"}; is generated by separate explicite convolution of a.c. and discrete parts of \code{e1} and \code{e2}
         and subsequent flattening with \code{\link{flat.LCD}}; if \code{getdistrOption("withSimplify")} is  \code{TRUE}, result is piped
         through a call to \code{\link{simplifyD}}}
\item{\code{+}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: both operands are coerced
                to class \code{"UnivarLebDecDistribution"} and the corresponding method is used.
                }
\item{\code{+}}{\code{signature(e1 = "Binom", e2 = "Binom")} assumes \code{e1}, \code{e2} independent; 
if \code{prob(e1)==prob(e2)}, result again of class 
         \code{"Binom"}; uses the convolution formula for binomial distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Cauchy", e2 = "Cauchy")}  assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"Cauchy"}; uses the convolution formula for Cauchy distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Chisq", e2 = "Chisq")}  assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"Chisq"}; uses the convolution formula for Chisq distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "Dirac")} result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "ExpOrGammaOrChisq", e2 = "ExpOrGammaOrChisq")}  assumes \code{e1}, \code{e2} independent; if 
         \code{e1}, \code{e2} are Gamma distributions, result is of class 
         \code{"Gammad"}; uses the convolution formula for Gamma distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Pois", e2 = "Pois")}  assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"Pois"}; uses the convolution formula for Poisson distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Nbinom", e2 = "Nbinom")}  assumes \code{e1}, \code{e2} independent; if 
\code{prob(e1)==prob(e2)}, result again of class 
         \code{"Nbinom"}; uses the convolution formula for negative binomial distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Norm", e2 = "Norm")}  assumes \code{e1}, \code{e2} independent; result again of class 
         \code{"Norm"}; uses the convolution formula for normal distributions; exact}
\item{\code{+}}{\code{signature(e1 = "UnivariateDistribution", e2 = "Dirac")}  translated to \code{e1 + location(e2)}; 
         result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "UnivariateDistribution")}  translated to \code{e2 + location(e1)}; 
         result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "DiscreteDistribution")}  translated to \code{e2 + location(e1)}; 
         result again of class \code{"Dirac"}; exact}
\item{\code{-}}{\code{signature(e1 = "Dirac", e2 = "Dirac")}  result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "Dirac", e2 = "Dirac")}  result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "UnivariateDistribution", e2 = "Dirac")}  translated to \code{e1 * location(e2)}; 
         result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "Dirac", e2 = "UnivariateDistribution")}  translated to \code{e2 * location(e1)}; 
         result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: by means of \code{\link{decomposePM}}
                \code{e1} and \code{e2} are decomposed into positive and negative parts; of these, convolutions of the
                corresponding logarithms are computed separately and finally \code{exp} is applied to them, again separately;
                the resulting mixing components are then ``flattened'' to one object of class 
                \code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} which according to \code{getdistrOption(withSimplify)} 
                gets piped through a call to \code{\link{simplifyD}}.
                }
\item{\code{/}}{\code{signature(e1 = "Dirac", e2 = "Dirac")}  result again of class \code{"Dirac"}; exact}
\item{\code{/}}{\code{signature(e1 = "numeric", e2 = "Dirac")}  result again of class \code{"Dirac"}; exact}
\item{\code{/}}{\code{signature(e1 = "numeric", e2 = "AcDcLcDistribution")}: if \code{d.discrete(e2)(0)*discreteWeight(e2)>0}
                throws an error (would give division by 0 with positive probability); else by means of \code{\link{decomposePM}}
                \code{e2} is decomposed into positive and negative parts; then, similarly the result obtains as for 
                \code{"*"(signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"))} by the exp-log trick
                and is ``flattened'' to one object of class 
                \code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and 
                according to \code{getdistrOption(withSimplify)} is piped through
                a call to \code{\link{simplifyD}}; exact..
                }
\item{\code{/}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: translated to \code{e1 * (1/e2)}.
                }
\item{\code{^}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "Integer")}: if \code{e2=0} returns \code{Dirac(1)};
                if \code{e2=1} returns \code{e1}; if \code{e2<0} translated to \code{(1/e1)^(-e2)}; exact. 
                }
\item{\code{^}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "numeric")}: if \code{e2} is integer uses preceding
                item; else if \code{e1< 0} with positive probability, throughs an error; else
                the result obtains similarly to 
                \code{"*"(signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"))} by the exp-log trick
                and is ``flattened'' to one object of class 
                \code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and 
                according to \code{getdistrOption(withSimplify)} is piped through
                a call to \code{\link{simplifyD}}; exact.
                }
\item{\code{^}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: 
                if \code{e1} is negative with positive probability, 
                throws an error if \code{e2} is non-integer
                with positive probability; if \code{e1} is 0 with positive probability
                throws an error if \code{e2} is non-integer with positive probability. 
                if  \code{e2} is integer with probability 1 uses 
                \code{DiscreteDistribution(supp=e1^(Dirac(x))} for each \code{x} in \code{support(e2)},
                builds up a corresponding mixing distribution; the latter is ``flattened'' to one object of class 
                \code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and 
                according to \code{getdistrOption(withSimplify)} is piped through
                a call to \code{\link{simplifyD}}.
                Else the result obtains similarly to \code{"*"(signature(e1 = "AcDcLcDistribution", 
                e2 = "AcDcLcDistribution"))} by the exp-log trick
                and is ``flattened'' to one object of class 
                \code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and 
                according to \code{getdistrOption(withSimplify)} is piped through
                a call to \code{\link{simplifyD}}; exact.
                }
\item{\code{^}}{\code{signature(e1 = "numeric", e2 = "AcDcLcDistribution")}: 
                if \code{e1} is negative, throws an error if \code{e2} is non-integer
                with positive probability; if \code{e1} is 0 throws an error if
                \code{e2} is non-integer with positive probability. 
                if  \code{e2} is integer with probability 1 uses 
                \code{DiscreteDistribution(supp=e1^support(e2), prob=discrete.d(supp))}
                else the result obtains similarly to \code{"*"(signature(e1 = "AcDcLcDistribution", 
                e2 = "AcDcLcDistribution"))} by the exp-log trick
                and is ``flattened'' to one object of class 
                \code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and 
                according to \code{getdistrOption(withSimplify)} is piped through
                a call to \code{\link{simplifyD}}; exact.
                }
}}

\seealso{
\code{\link{UnivariateDistribution-class}}
\code{\link{AbscontDistribution-class}} \cr
\code{\link{DiscreteDistribution-class}}
\code{\link{LatticeDistribution-class}}\cr
\code{\link{Norm-class}}
\code{\link{Binom-class}}
\code{\link{Pois-class}}
\code{\link{Dirac-class}}\cr
\code{\link{Cauchy-class}}
\code{\link{Gammad-class}}
\code{\link{Logis-class}}
\code{\link{Lnorm-class}}\cr
\code{\link{Exp-class}}
\code{\link{Weibull-class}}
\code{\link{Nbinom-class}}
}

\arguments{
  \item{e1,e2}{ objects of class \code{"UnivariateDistribution"} (or subclasses) or \code{"numeric"}}
}
\examples{
N <- Norm(0,3)
P <- Pois(4)
a <- 3
N + a
N + P
N - a
a * N
a * P
N / a + sin( a * P - N)
N * P
N / N
\donttest{
## takes a little time
N ^ P
}
1.2 ^ N
abs(N) ^ 1.3
}
\references{
Ruckdeschel, P., Kohl, M.(2014):
   General purpose convolution algorithm for distributions 
  in S4-Classes by means of FFT. \emph{J. Statist. Softw.}
  \bold{59}(4): 1-25.
}

\keyword{math}
\keyword{distribution}
\keyword{arith}
\concept{convolution}
\concept{FFT}
\concept{affine linear}
\concept{image distribution}