1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
\name{operators-methods}
\docType{methods}
\alias{operators-methods}
\alias{operators}
\alias{-,UnivariateDistribution,missing-method}
\alias{-,LatticeDistribution,missing-method}
\alias{-,Norm,missing-method}
\alias{+,UnivariateDistribution,numeric-method}
\alias{+,AbscontDistribution,numeric-method}
\alias{+,DiscreteDistribution,numeric-method}
\alias{+,LatticeDistribution,numeric-method}
\alias{+,UnivarLebDecDistribution,numeric-method}
\alias{+,AffLinAbscontDistribution,numeric-method}
\alias{+,AffLinDiscreteDistribution,numeric-method}
\alias{+,AffLinLatticeDistribution,numeric-method}
\alias{+,AffLinUnivarLebDecDistribution,numeric-method}
\alias{+,CompoundDistribution,numeric-method}
\alias{+,Cauchy,numeric-method}
\alias{+,Dirac,numeric-method}
\alias{+,Norm,numeric-method}
\alias{+,Unif,numeric-method}
\alias{+,numeric,UnivariateDistribution-method}
\alias{+,numeric,LatticeDistribution-method}
%%\alias{-,UnivariateDistribution,ANY-method}
\alias{-,UnivariateDistribution,numeric-method}
\alias{-,UnivariateDistribution,UnivariateDistribution-method}
\alias{-,LatticeDistribution,numeric-method}
\alias{-,LatticeDistribution,LatticeDistribution-method}
\alias{-,LatticeDistribution,UnivariateDistribution-method}
\alias{-,UnivariateDistribution,LatticeDistribution-method}
\alias{-,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{-,numeric,UnivariateDistribution-method}
\alias{-,numeric,LatticeDistribution-method}
\alias{*,UnivariateDistribution,numeric-method}
\alias{*,AbscontDistribution,numeric-method}
\alias{*,DiscreteDistribution,numeric-method}
\alias{*,LatticeDistribution,numeric-method}
\alias{*,UnivarLebDecDistribution,numeric-method}
\alias{*,CompoundDistribution,numeric-method}
\alias{*,AffLinAbscontDistribution,numeric-method}
\alias{*,AffLinDiscreteDistribution,numeric-method}
\alias{*,AffLinLatticeDistribution,numeric-method}
\alias{*,AffLinUnivarLebDecDistribution,numeric-method}
\alias{*,DExp,numeric-method}
\alias{*,Exp,numeric-method}
\alias{*,ExpOrGammaOrChisq,numeric-method}
\alias{*,Weibull,numeric-method}
\alias{*,Cauchy,numeric-method}
\alias{*,Dirac,numeric-method}
\alias{*,Norm,numeric-method}
\alias{*,Logis,numeric-method}
\alias{*,Lnorm,numeric-method}
\alias{*,Unif,numeric-method}
\alias{*,numeric,UnivariateDistribution-method}
\alias{*,numeric,LatticeDistribution-method}
\alias{/,UnivariateDistribution,numeric-method}
\alias{/,LatticeDistribution,numeric-method}
\alias{+,UnivariateDistribution,UnivariateDistribution-method}
\alias{+,AbscontDistribution,AbscontDistribution-method}
\alias{+,AbscontDistribution,DiscreteDistribution-method}
\alias{+,DiscreteDistribution,AbscontDistribution-method}
\alias{+,DiscreteDistribution,DiscreteDistribution-method}
\alias{+,LatticeDistribution,DiscreteDistribution-method}
\alias{+,LatticeDistribution,LatticeDistribution-method}
\alias{+,UnivarLebDecDistribution,UnivarLebDecDistribution-method}
\alias{+,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{+,Binom,Binom-method}
\alias{+,Cauchy,Cauchy-method}
\alias{+,Chisq,Chisq-method}
\alias{+,Dirac,Dirac-method}
\alias{+,ExpOrGammaOrChisq,ExpOrGammaOrChisq-method}
\alias{+,Pois,Pois-method}
\alias{+,Nbinom,Nbinom-method}
\alias{+,Norm,Norm-method}
\alias{+,Logis,numeric-method}
\alias{+,Dirac,UnivariateDistribution-method}
\alias{+,Dirac,DiscreteDistribution-method}
\alias{+,UnivariateDistribution,Dirac-method}
\alias{-,numeric,Beta-method}
\alias{-,Dirac,Dirac-method}
\alias{*,Dirac,Dirac-method}
\alias{*,Dirac,UnivariateDistribution-method}
\alias{*,UnivariateDistribution,Dirac-method}
\alias{*,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{/,Dirac,Dirac-method}
\alias{/,numeric,Dirac-method}
\alias{/,numeric,AcDcLcDistribution-method}
\alias{/,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{^,AcDcLcDistribution,numeric-method}
\alias{^,AcDcLcDistribution,Integer-method}
\alias{^,AcDcLcDistribution,AcDcLcDistribution-method}
\alias{^,numeric,AcDcLcDistribution-method}
\title{Methods for operators +,-,*,/,... in Package distr}
\description{Arithmetics and unary mathematical transformations for distributions}
\details{Arithmetics as well as all functions from group \code{Math}, see \code{\link[methods:S4groupGeneric]{Math}}
are provided for distributions; wherever possible exact expressions are used; else
random variables are generated according to this transformation and subsequently the remaining
slots filled by \code{\link{RtoDPQ}}, \code{\link{RtoDPQ.d}}}
\section{Methods}{\describe{
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2 = "missing")} unary operator; result again of class \code{"UnivariateDistribution"}; exact}
\item{\code{-}}{\code{signature(e1 = "Norm", e2 = "missing")} unary operator; result again of \code{"Norm"}; exact}
\item{\code{+}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} result again of class \code{"UnivariateDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")} result of
class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "DiscreteDistribution", e2 = "numeric")} result of
class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")} result of
class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")} result of
class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "CompoundDistribution", e2 = "numeric")} result of
class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")} result again of
class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")} result again of
class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")} result again of
class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")} result of
class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{+}}{\code{signature(e1 = "Cauchy", e2 = "numeric")} result again of class \code{"Cauchy"}; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "numeric")} result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "Norm", e2 = "numeric")} result again of class \code{"Norm"}; exact}
\item{\code{+}}{\code{signature(e1 = "Unif", e2 = "numeric")} result again of class \code{"Unif"}; exact}
\item{\code{+}}{\code{signature(e1 = "Logis", e2 = "numeric")} result again of class \code{"Logis"}; exact}
\item{\code{+}}{\code{signature(e1 = "numeric", e2 = "UnivariateDistribution")} is translated to
\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")}; exact}
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2= "ANY")};exact}
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} is translated to
\code{e1 + (-e2)}; exact}
\item{\code{-}}{\code{signature(e1 = "numeric", e2 = "UnivariateDistribution")} is translated to \code{(-e1) + e2}; exact}
\item{\code{-}}{\code{signature(e1 = "numeric", e2 = "Beta")} if \code{ncp(e2)==0} and \code{e1 == 1},
an exact (central) \code{Beta(shape1 = shape2(e2), shape2 = shape1(e2))} is returned, else
the default method is used; exact}
\item{\code{*}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} result again of class \code{"UnivariateDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AbscontDistribution", e2 = "numeric")} result of
class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "DiscreteDistribution", e2 = "numeric")} result of
class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "LatticeDistribution", e2 = "numeric")} result of
class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "numeric")} result of
class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "CompoundDistribution", e2 = "numeric")} result of
class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinAbscontDistribution", e2 = "numeric")} result again of
class \code{"AffLinAbscontDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinDiscreteDistribution", e2 = "numeric")} result again of
class \code{"AffLinDiscreteDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinLatticeDistribution", e2 = "numeric")} result again of
class \code{"AffLinLatticeDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "AffLinUnivarLebDecDistribution", e2 = "numeric")} result of
class \code{"AffLinUnivarLebDecDistribution"}; exact}
\item{\code{*}}{\code{signature(e1 = "DExp", e2 = "numeric")} if \code{abs(e2)>0} result again of class \code{"DExp"}; exact}
\item{\code{*}}{\code{signature(e1 = "Exp", e2 = "numeric")} if \code{e2>0} result again of class \code{"Exp"}; exact}
\item{\code{*}}{\code{signature(e1 = "ExpOrGammaOrChisq", e2 = "numeric")} if \code{e1} is a Gamma distribution and \code{e2>0}
result of class \code{"Gammad"}; exact}
\item{\code{*}}{\code{signature(e1 = "Weibull", e2 = "numeric")} if \code{e2>0}
result of class \code{"Weibull"}; exact}
\item{\code{*}}{\code{signature(e1 = "Cauchy", e2 = "numeric")} if \code{abs(e2)>0} result again of class \code{"Cauchy"}; exact}
\item{\code{*}}{\code{signature(e1 = "Dirac", e2 = "numeric")} result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "Norm", e2 = "numeric")} if \code{abs(e2)>0} result again of class \code{"Norm"}; exact}
\item{\code{*}}{\code{signature(e1 = "Unif", e2 = "numeric")} if \code{abs(e2)>0} result again of class \code{"Unif"}; exact}
\item{\code{*}}{\code{signature(e1 = "Logis", e2 = "numeric")} if \code{e2>0} result again of class \code{"Logis"}; exact}
\item{\code{*}}{\code{signature(e1 = "Lnorm", e2 = "numeric")} if \code{e2>0} result again of class \code{"Lnorm"}; exact}
\item{\code{*}}{\code{signature(e1 = "numeric", e2 = "UnivariateDistribution")} is translated to
\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")}; exact}
\item{\code{/}}{\code{signature(e1 = "UnivariateDistribution", e2 = "numeric")} is translated to \code{e1 * (1/e2)}; exact}
\item{\code{+}}{\code{signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution")} result again of class
\code{"UnivariateDistribution"}; is generated by simulations}
\item{\code{-}}{\code{signature(e1 = "UnivariateDistribution", e2 = "UnivariateDistribution")} is translated to \code{(-e1) + (-e2)};
result again of class \code{"UnivariateDistribution"}; is generated by simulations}
\item{\code{-}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: both operands are coerced
to class \code{"UnivarLebDecDistribution"} and the corresponding method is used.
}
\item{\code{+}}{\code{signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"AbscontDistribution"}; is generated by FFT}
\item{\code{+}}{\code{signature(e1 = "AbscontDistribution", e2 = "DiscreteDistribution")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"AbscontDistribution"}; is generated by FFT}
\item{\code{+}}{\code{signature(e1 = "DiscreteDistribution", e2 = "AbscontDistribution")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"AbscontDistribution"}; is generated by FFT}
\item{\code{+}}{\code{signature(e1 = "LatticeDistribution", e2 = "LatticeDistribution")} assumes \code{e1}, \code{e2} independent;
if the larger lattice-width is an integer multiple of the smaller(in abs. value) one: result again of class
\code{"LatticeDistribution"}; is generated by D/FFT}
\item{\code{+}}{\code{signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"DiscreteDistribution"}; is generated by explicite convolution}
\item{\code{+}}{\code{signature(e1 = "LatticeDistribution", e2 = "DiscreteDistribution")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"DiscreteDistribution"}; is generated by explicite convolution}
\item{\code{+}}{\code{signature(e1 = "UnivarLebDecDistribution", e2 = "UnivarLebDecDistribution")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"UnivarLebDecDistribution"}; is generated by separate explicite convolution of a.c. and discrete parts of \code{e1} and \code{e2}
and subsequent flattening with \code{\link{flat.LCD}}; if \code{getdistrOption("withSimplify")} is \code{TRUE}, result is piped
through a call to \code{\link{simplifyD}}}
\item{\code{+}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: both operands are coerced
to class \code{"UnivarLebDecDistribution"} and the corresponding method is used.
}
\item{\code{+}}{\code{signature(e1 = "Binom", e2 = "Binom")} assumes \code{e1}, \code{e2} independent;
if \code{prob(e1)==prob(e2)}, result again of class
\code{"Binom"}; uses the convolution formula for binomial distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Cauchy", e2 = "Cauchy")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"Cauchy"}; uses the convolution formula for Cauchy distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Chisq", e2 = "Chisq")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"Chisq"}; uses the convolution formula for Chisq distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "Dirac")} result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "ExpOrGammaOrChisq", e2 = "ExpOrGammaOrChisq")} assumes \code{e1}, \code{e2} independent; if
\code{e1}, \code{e2} are Gamma distributions, result is of class
\code{"Gammad"}; uses the convolution formula for Gamma distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Pois", e2 = "Pois")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"Pois"}; uses the convolution formula for Poisson distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Nbinom", e2 = "Nbinom")} assumes \code{e1}, \code{e2} independent; if
\code{prob(e1)==prob(e2)}, result again of class
\code{"Nbinom"}; uses the convolution formula for negative binomial distributions; exact}
\item{\code{+}}{\code{signature(e1 = "Norm", e2 = "Norm")} assumes \code{e1}, \code{e2} independent; result again of class
\code{"Norm"}; uses the convolution formula for normal distributions; exact}
\item{\code{+}}{\code{signature(e1 = "UnivariateDistribution", e2 = "Dirac")} translated to \code{e1 + location(e2)};
result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "UnivariateDistribution")} translated to \code{e2 + location(e1)};
result again of class \code{"Dirac"}; exact}
\item{\code{+}}{\code{signature(e1 = "Dirac", e2 = "DiscreteDistribution")} translated to \code{e2 + location(e1)};
result again of class \code{"Dirac"}; exact}
\item{\code{-}}{\code{signature(e1 = "Dirac", e2 = "Dirac")} result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "Dirac", e2 = "Dirac")} result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "UnivariateDistribution", e2 = "Dirac")} translated to \code{e1 * location(e2)};
result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "Dirac", e2 = "UnivariateDistribution")} translated to \code{e2 * location(e1)};
result again of class \code{"Dirac"}; exact}
\item{\code{*}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: by means of \code{\link{decomposePM}}
\code{e1} and \code{e2} are decomposed into positive and negative parts; of these, convolutions of the
corresponding logarithms are computed separately and finally \code{exp} is applied to them, again separately;
the resulting mixing components are then ``flattened'' to one object of class
\code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} which according to \code{getdistrOption(withSimplify)}
gets piped through a call to \code{\link{simplifyD}}.
}
\item{\code{/}}{\code{signature(e1 = "Dirac", e2 = "Dirac")} result again of class \code{"Dirac"}; exact}
\item{\code{/}}{\code{signature(e1 = "numeric", e2 = "Dirac")} result again of class \code{"Dirac"}; exact}
\item{\code{/}}{\code{signature(e1 = "numeric", e2 = "AcDcLcDistribution")}: if \code{d.discrete(e2)(0)*discreteWeight(e2)>0}
throws an error (would give division by 0 with positive probability); else by means of \code{\link{decomposePM}}
\code{e2} is decomposed into positive and negative parts; then, similarly the result obtains as for
\code{"*"(signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"))} by the exp-log trick
and is ``flattened'' to one object of class
\code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and
according to \code{getdistrOption(withSimplify)} is piped through
a call to \code{\link{simplifyD}}; exact..
}
\item{\code{/}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}: translated to \code{e1 * (1/e2)}.
}
\item{\code{^}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "Integer")}: if \code{e2=0} returns \code{Dirac(1)};
if \code{e2=1} returns \code{e1}; if \code{e2<0} translated to \code{(1/e1)^(-e2)}; exact.
}
\item{\code{^}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "numeric")}: if \code{e2} is integer uses preceding
item; else if \code{e1< 0} with positive probability, throughs an error; else
the result obtains similarly to
\code{"*"(signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"))} by the exp-log trick
and is ``flattened'' to one object of class
\code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and
according to \code{getdistrOption(withSimplify)} is piped through
a call to \code{\link{simplifyD}}; exact.
}
\item{\code{^}}{\code{signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution")}:
if \code{e1} is negative with positive probability,
throws an error if \code{e2} is non-integer
with positive probability; if \code{e1} is 0 with positive probability
throws an error if \code{e2} is non-integer with positive probability.
if \code{e2} is integer with probability 1 uses
\code{DiscreteDistribution(supp=e1^(Dirac(x))} for each \code{x} in \code{support(e2)},
builds up a corresponding mixing distribution; the latter is ``flattened'' to one object of class
\code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and
according to \code{getdistrOption(withSimplify)} is piped through
a call to \code{\link{simplifyD}}.
Else the result obtains similarly to \code{"*"(signature(e1 = "AcDcLcDistribution",
e2 = "AcDcLcDistribution"))} by the exp-log trick
and is ``flattened'' to one object of class
\code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and
according to \code{getdistrOption(withSimplify)} is piped through
a call to \code{\link{simplifyD}}; exact.
}
\item{\code{^}}{\code{signature(e1 = "numeric", e2 = "AcDcLcDistribution")}:
if \code{e1} is negative, throws an error if \code{e2} is non-integer
with positive probability; if \code{e1} is 0 throws an error if
\code{e2} is non-integer with positive probability.
if \code{e2} is integer with probability 1 uses
\code{DiscreteDistribution(supp=e1^support(e2), prob=discrete.d(supp))}
else the result obtains similarly to \code{"*"(signature(e1 = "AcDcLcDistribution",
e2 = "AcDcLcDistribution"))} by the exp-log trick
and is ``flattened'' to one object of class
\code{UnivarLebDecDistribution} by \code{\link{flat.LCD}} and
according to \code{getdistrOption(withSimplify)} is piped through
a call to \code{\link{simplifyD}}; exact.
}
}}
\seealso{
\code{\link{UnivariateDistribution-class}}
\code{\link{AbscontDistribution-class}} \cr
\code{\link{DiscreteDistribution-class}}
\code{\link{LatticeDistribution-class}}\cr
\code{\link{Norm-class}}
\code{\link{Binom-class}}
\code{\link{Pois-class}}
\code{\link{Dirac-class}}\cr
\code{\link{Cauchy-class}}
\code{\link{Gammad-class}}
\code{\link{Logis-class}}
\code{\link{Lnorm-class}}\cr
\code{\link{Exp-class}}
\code{\link{Weibull-class}}
\code{\link{Nbinom-class}}
}
\arguments{
\item{e1,e2}{ objects of class \code{"UnivariateDistribution"} (or subclasses) or \code{"numeric"}}
}
\examples{
N <- Norm(0,3)
P <- Pois(4)
a <- 3
N + a
N + P
N - a
a * N
a * P
N / a + sin( a * P - N)
N * P
N / N
\donttest{
## takes a little time
N ^ P
}
1.2 ^ N
abs(N) ^ 1.3
}
\references{
Ruckdeschel, P., Kohl, M.(2014):
General purpose convolution algorithm for distributions
in S4-Classes by means of FFT. \emph{J. Statist. Softw.}
\bold{59}(4): 1-25.
}
\keyword{math}
\keyword{distribution}
\keyword{arith}
\concept{convolution}
\concept{FFT}
\concept{affine linear}
\concept{image distribution}
|