File: doby.html

package info (click to toggle)
r-cran-doby 4.7.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,400 kB
  • sloc: makefile: 2
file content (910 lines) | stat: -rw-r--r-- 304,688 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="generator" content="litedown 0.8">
<title>doby: Groupwise computations and miscellaneous utilities</title>
<style type="text/css">
body {
  font-family: sans-serif;
  max-width: 800px;
  margin: auto;
  padding: 1em;
  line-height: 1.5;
  print-color-adjust: exact;
  -webkit-print-color-adjust: exact;
}
body, .abstract, code, .footnotes, footer, #refs, .caption { font-size: .9em; }
li li { font-size: .95em; }
ul:has(li > input[type="checkbox"]) { list-style: none; padding-left: 1em; }
*, :before, :after { box-sizing: border-box; }
a { color: steelblue; }
pre, img { max-width: 100%; }
pre { white-space: pre-wrap; word-break: break-word; }
pre code { display: block; padding: 1em; overflow-x: auto; }
code { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; }
:not(pre, th) > code, code[class], div > .caption { background: #f8f8f8; }
pre > code:is(:not([class]), .language-plain, .language-none, .plain), .box, .figure, .table { background: inherit; border: 1px solid #eee; }
pre > code {
  &.message { border-color: #9eeaf9; }
  &.warning { background: #fff3cd; border-color: #fff3cd; }
  &.error { background: #f8d7da; border-color: #f8d7da; }
}
.fenced-chunk { border-left: 1px solid #666; }
.code-fence {
  opacity: .4;
  border: 1px dashed #666;
  border-left: 2px solid;
  &:hover { opacity: inherit; }
}
.box, .figure, .table, table { margin: 1em auto; }
div > .caption { padding: 1px 1em; }
.figure { p:has(img, svg), pre:has(svg) { text-align: center; } }
.flex-col { display: flex; justify-content: space-between; }
table {
  &:only-child:not(.table > *) { margin: auto; }
  th, td { padding: 5px; font-variant-numeric: tabular-nums; }
  thead, tfoot, tr:nth-child(even) { background: whitesmoke; }
  thead th { border-bottom: 1px solid #ddd; }
  &:not(.datatable-table) {
    border-top: 1px solid #666;
    border-bottom: 1px solid #666;
  }
}
blockquote {
  color: #666;
  margin: 0;
  padding: 1px 1em;
  border-left: .5em solid #eee;
}
hr, .footnotes::before { border: 1px dashed #ddd; }
.frontmatter { text-align: center; }
#TOC {
  a { text-decoration: none; }
  ul { list-style: none; padding-left: 1em; }
  & > ul { padding: 0; }
  ul ul { border-left: 1px solid lightsteelblue; }
}
.body h2 { border-bottom: 1px solid #666; }
.body .appendix, .appendix ~ h2 { border-bottom-style: dashed; }
.main-number::after { content: "."; }
span[class^="ref-number-"] { font-weight: bold; }
.ref-number-fig::after, .ref-number-tab::after { content: ":"; }
.cross-ref-chp::before { content: "Chapter "; }
.cross-ref-sec::before { content: "Section "; }
.cross-ref-fig::before, .ref-number-fig::before { content: "Figure "; }
.cross-ref-tab::before, .ref-number-tab::before { content: "Table "; }
.cross-ref-eqn::before, .MathJax_ref:has(mjx-mtext > mjx-c + mjx-c)::before { content: "Equation "; }
.abstract, #refs {
  &::before { display: block; margin: 1em auto; font-weight: bold; }
}
.abstract::before { content: "Abstract"; text-align: center; }
#refs::before { content: "Bibliography"; font-size: 1.5em; }
.ref-paren-open::before { content: "("; }
.ref-paren-close::after { content: ")"; }
.ref-semicolon::after { content: "; "; }
.ref-and::after { content: " and "; }
.ref-et-al::after { content: " et al."; font-style: italic; }
.footnote-ref a {
  &::before { content: "["; }
  &::after { content: "]"; }
}
section.footnotes {
  margin-top: 2em;
  &::before { content: ""; display: block; max-width: 20em; }
}
.fade {
  background: repeating-linear-gradient(135deg, white, white 30px, #ddd 32px, #ddd 32px);
  opacity: 0.6;
}

@media print {
  body { max-width: 100%; }
  tr, img { break-inside: avoid; }
}
@media only screen and (min-width: 992px) {
  body:not(.pagesjs) pre:has(.line-numbers):not(:hover) { white-space: pre; }
}
</style>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.25/dist/katex.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@xiee/utils@1.14.17/css/prism-xcode.min.css">
<script src="https://cdn.jsdelivr.net/combine/npm/katex@0.16.25/dist/katex.min.js,npm/katex@0.16.25/dist/contrib/auto-render.min.js" defer></script>
<script src="https://cdn.jsdelivr.net/npm/@xiee/utils@1.14.17/js/render-katex.min.js" defer></script>
<script src="https://cdn.jsdelivr.net/npm/prismjs@1.29.0/components/prism-core.min.js" defer></script>
<script src="https://cdn.jsdelivr.net/npm/prismjs@1.29.0/plugins/autoloader/prism-autoloader.min.js" defer></script>
</head>
<body>
<div class="frontmatter">
<div class="title"><h1>doby: Groupwise computations and miscellaneous utilities</h1></div>
<div class="author"><h2>Søren Højsgaard</h2></div>
</div>
<div class="body">
<p>The \doby{} package contains a variety of utility functions. This
working document describes some of these functions. The package
originally grew out of a need to calculate groupwise summary
statistics (much in the spirit of \code{PROC SUMMARY} of the
\proglang{SAS} system), but today the package contains many different
utilities.</p>
<pre><code class="language-r">library(doBy)
</code></pre>
<p>\section{Data used for illustration}
\label{sec:co2data}</p>
<p>The description of the \code{doBy} package is based on the \code{mtcars}
dataset.</p>
<pre><code class="language-r">head(mtcars)
#&gt;                    mpg cyl disp  hp drat   wt qsec vs am gear carb
#&gt; Mazda RX4         21.0   6  160 110 3.90 2.62 16.5  0  1    4    4
#&gt; Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0  0  1    4    4
#&gt; Datsun 710        22.8   4  108  93 3.85 2.32 18.6  1  1    4    1
#&gt; Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4  1  0    3    1
#&gt; Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0  0    3    2
#&gt; Valiant           18.1   6  225 105 2.76 3.46 20.2  1  0    3    1
tail(mtcars)
#&gt;                 mpg cyl  disp  hp drat   wt qsec vs am gear carb
#&gt; Porsche 914-2  26.0   4 120.3  91 4.43 2.14 16.7  0  1    5    2
#&gt; Lotus Europa   30.4   4  95.1 113 3.77 1.51 16.9  1  1    5    2
#&gt; Ford Pantera L 15.8   8 351.0 264 4.22 3.17 14.5  0  1    5    4
#&gt; Ferrari Dino   19.7   6 145.0 175 3.62 2.77 15.5  0  1    5    6
#&gt; Maserati Bora  15.0   8 301.0 335 3.54 3.57 14.6  0  1    5    8
#&gt; Volvo 142E     21.4   4 121.0 109 4.11 2.78 18.6  1  1    4    2
</code></pre>
<h1 id="chp:groupwise-computations">Groupwise computations</h1>
<h2 id="sec:summaryby-and-summary-by">summaryBy()  and summary_by()</h2>
<p>\label{sec:summaryBy}</p>
<p>The \summaryby{} function is used for calculating quantities like
``the mean and variance of numerical variables \(x\) and \(y\) for
each combination of two factors \(A\) and \(B\)’’.
Notice: A functionality similar to \summaryby\ is provided by
\code{aggregate()} from base \R.</p>
<pre><code class="language-r">myfun1 &lt;- function(x){
    c(m=mean(x), s=sd(x))
}
summaryBy(cbind(mpg, cyl, lh=log(hp)) ~ vs, 
          data=mtcars, FUN=myfun1)
#&gt;   vs mpg.m mpg.s cyl.m cyl.s lh.m  lh.s
#&gt; 1  0  16.6  3.86  7.44 1.149 5.20 0.330
#&gt; 2  1  24.6  5.38  4.57 0.938 4.48 0.289
</code></pre>
<p>A simpler call is</p>
<pre><code class="language-r">summaryBy(mpg ~ vs, data=mtcars, FUN=mean)
#&gt;   vs mpg.mean
#&gt; 1  0     16.6
#&gt; 2  1     24.6
</code></pre>
<p>Instead of formula we may specify a list containing the left hand side
and the right hand side of a formula\footnote{This is a feature of
\summaryby\ and it does not work with \code{aggregate}.} but that is
possible only for variables already in the dataframe:</p>
<pre><code class="language-r">summaryBy(list(c(&quot;mpg&quot;, &quot;cyl&quot;), &quot;vs&quot;), 
          data=mtcars, FUN=myfun1)
#&gt;   vs mpg.m mpg.s cyl.m cyl.s
#&gt; 1  0  16.6  3.86  7.44 1.149
#&gt; 2  1  24.6  5.38  4.57 0.938
</code></pre>
<p>Inspired by the \pkg{dplyr} package, there is a \verb|summary_by| function which
does the samme as \summaryby{} but with the data argument being the first so
that one may write</p>
<pre><code class="language-r">mtcars |&gt; summary_by(cbind(mpg, cyl, lh=log(hp)) ~ vs,
                      FUN=myfun1)
#&gt;   vs mpg.m mpg.s cyl.m cyl.s lh.m  lh.s
#&gt; 1  0  16.6  3.86  7.44 1.149 5.20 0.330
#&gt; 2  1  24.6  5.38  4.57 0.938 4.48 0.289
</code></pre>
<h2 id="sec:orderby-and-order-by">orderBy() and order_by()</h2>
<p>Ordering (or sorting) a data frame is possible with the \code{orderBy}
function. For example, we order the rows according to \code{gear} and \code{carb} (within \code{gear}):</p>
<pre><code class="language-r">x1 &lt;- orderBy(~ gear + carb, data=mtcars)
head(x1, 4)
#&gt;                    mpg cyl disp  hp drat   wt qsec vs am gear carb
#&gt; Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4  1  0    3    1
#&gt; Valiant           18.1   6  225 105 2.76 3.46 20.2  1  0    3    1
#&gt; Toyota Corona     21.5   4  120  97 3.70 2.46 20.0  1  0    3    1
#&gt; Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0  0    3    2
tail(x1, 4)
#&gt;                 mpg cyl  disp  hp drat   wt qsec vs am gear carb
#&gt; Lotus Europa   30.4   4  95.1 113 3.77 1.51 16.9  1  1    5    2
#&gt; Ford Pantera L 15.8   8 351.0 264 4.22 3.17 14.5  0  1    5    4
#&gt; Ferrari Dino   19.7   6 145.0 175 3.62 2.77 15.5  0  1    5    6
#&gt; Maserati Bora  15.0   8 301.0 335 3.54 3.57 14.6  0  1    5    8
</code></pre>
<p>If we want the ordering to be by decreasing values of one of the
variables, we can do</p>
<pre><code class="language-r">x2 &lt;- orderBy(~ -gear + carb, data=mtcars)
</code></pre>
<p>Alternative forms are:</p>
<pre><code class="language-r">x3 &lt;- orderBy(c(&quot;gear&quot;, &quot;carb&quot;), data=mtcars)
x4 &lt;- orderBy(c(&quot;-gear&quot;, &quot;carb&quot;), data=mtcars)
x5 &lt;- mtcars |&gt; order_by(c(&quot;gear&quot;, &quot;carb&quot;))
x6 &lt;- mtcars |&gt; order_by(~ -gear + carb)
</code></pre>
<h2 id="sec:splitby-and-split-by">splitBy() and split_by()</h2>
<p>Suppose we want to split the \code{airquality} data into a list of dataframes, e.g.\ one
dataframe for each month. This can be achieved by:</p>
<pre><code class="language-r">x &lt;- splitBy(~ Month, data=airquality)
x &lt;- splitBy(~ vs, data=mtcars)
lapply(x, head, 4)
#&gt; $`0`
#&gt;                    mpg cyl disp  hp drat   wt qsec am gear carb
#&gt; Mazda RX4         21.0   6  160 110 3.90 2.62 16.5  1    4    4
#&gt; Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0  1    4    4
#&gt; Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0    3    2
#&gt; Duster 360        14.3   8  360 245 3.21 3.57 15.8  0    3    4
#&gt; 
#&gt; $`1`
#&gt;                 mpg cyl disp  hp drat   wt qsec am gear carb
#&gt; Datsun 710     22.8   4  108  93 3.85 2.32 18.6  1    4    1
#&gt; Hornet 4 Drive 21.4   6  258 110 3.08 3.21 19.4  0    3    1
#&gt; Valiant        18.1   6  225 105 2.76 3.46 20.2  0    3    1
#&gt; Merc 240D      24.4   4  147  62 3.69 3.19 20.0  0    4    2
attributes(x)
#&gt; $names
#&gt; [1] &quot;0&quot; &quot;1&quot;
#&gt; 
#&gt; $groupid
#&gt;            vs
#&gt; Mazda RX4   0
#&gt; Datsun 710  1
#&gt; 
#&gt; $idxvec
#&gt; $idxvec$`0`
#&gt;  [1]  1  2  5  7 12 13 14 15 16 17 22 23 24 25 27 29 30 31
#&gt; 
#&gt; $idxvec$`1`
#&gt;  [1]  3  4  6  8  9 10 11 18 19 20 21 26 28 32
#&gt; 
#&gt; 
#&gt; $grps
#&gt;           Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
#&gt;                 &quot;0&quot;                 &quot;0&quot;                 &quot;1&quot;                 &quot;1&quot; 
#&gt;   Hornet Sportabout             Valiant          Duster 360           Merc 240D 
#&gt;                 &quot;0&quot;                 &quot;1&quot;                 &quot;0&quot;                 &quot;1&quot; 
#&gt;            Merc 230            Merc 280           Merc 280C          Merc 450SE 
#&gt;                 &quot;1&quot;                 &quot;1&quot;                 &quot;1&quot;                 &quot;0&quot; 
#&gt;          Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
#&gt;                 &quot;0&quot;                 &quot;0&quot;                 &quot;0&quot;                 &quot;0&quot; 
#&gt;   Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
#&gt;                 &quot;0&quot;                 &quot;1&quot;                 &quot;1&quot;                 &quot;1&quot; 
#&gt;       Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
#&gt;                 &quot;1&quot;                 &quot;0&quot;                 &quot;0&quot;                 &quot;0&quot; 
#&gt;    Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
#&gt;                 &quot;0&quot;                 &quot;1&quot;                 &quot;0&quot;                 &quot;1&quot; 
#&gt;      Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
#&gt;                 &quot;0&quot;                 &quot;0&quot;                 &quot;0&quot;                 &quot;1&quot; 
#&gt; 
#&gt; $class
#&gt; [1] &quot;splitByData&quot; &quot;list&quot;
</code></pre>
<p>Alternative forms are:</p>
<pre><code class="language-r">splitBy(&quot;vs&quot;, data=mtcars)
#&gt;            listentry vs
#&gt; Mazda RX4          0  0
#&gt; Datsun 710         1  1
mtcars |&gt; split_by(~ vs)
#&gt;            listentry vs
#&gt; Mazda RX4          0  0
#&gt; Datsun 710         1  1
</code></pre>
<h2 id="sec:subsetby-and-subset-by">subsetBy() and subset_by()</h2>
<p>Suppose we want to select those rows within each month for which the the
wind speed is larger than the mean wind speed (within the month). This
is achieved by:</p>
<pre><code class="language-r">x &lt;- subsetBy(~am, subset=mpg &gt; mean(mpg), data=mtcars)
head(x)
#&gt;                      mpg cyl disp  hp drat   wt qsec vs gear carb
#&gt; 0.Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4  1    3    1
#&gt; 0.Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0    3    2
#&gt; 0.Valiant           18.1   6  225 105 2.76 3.46 20.2  1    3    1
#&gt; 0.Merc 240D         24.4   4  147  62 3.69 3.19 20.0  1    4    2
#&gt; 0.Merc 230          22.8   4  141  95 3.92 3.15 22.9  1    4    2
#&gt; 0.Merc 280          19.2   6  168 123 3.92 3.44 18.3  1    4    4
</code></pre>
<p>Note that the statement \code{Wind &gt; mean(Wind)} is evaluated within
each month.</p>
<p>Alternative forms are</p>
<pre><code class="language-r">x &lt;- subsetBy(&quot;am&quot;, subset=mpg &gt; mean(mpg), data=mtcars)
x &lt;- mtcars  |&gt; subset_by(&quot;vs&quot;, subset=mpg &gt; mean(mpg))
x &lt;- mtcars  |&gt; subset_by(~vs, subset=mpg &gt; mean(mpg))
</code></pre>
<h2 id="sec:transformby-and-transform-by">transformBy() and transform_by()</h2>
<p>The \code{transformBy} function is analogous to the \code{transform}
function except that it works within groups. For example:</p>
<pre><code class="language-r">head(x)
#&gt;                      mpg cyl disp  hp drat   wt qsec am gear carb
#&gt; 0.Mazda RX4         21.0   6  160 110 3.90 2.62 16.5  1    4    4
#&gt; 0.Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0  1    4    4
#&gt; 0.Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0  0    3    2
#&gt; 0.Merc 450SL        17.3   8  276 180 3.07 3.73 17.6  0    3    3
#&gt; 0.Pontiac Firebird  19.2   8  400 175 3.08 3.85 17.1  0    3    2
#&gt; 0.Porsche 914-2     26.0   4  120  91 4.43 2.14 16.7  1    5    2
x &lt;- transformBy(~vs, data=mtcars, 
                 min.mpg=min(mpg), max.mpg=max(mpg))
head(x)
#&gt;    mpg cyl disp  hp drat   wt qsec am gear carb min.mpg max.mpg
#&gt; 1 21.0   6  160 110 3.90 2.62 16.5  1    4    4    10.4      26
#&gt; 2 21.0   6  160 110 3.90 2.88 17.0  1    4    4    10.4      26
#&gt; 3 18.7   8  360 175 3.15 3.44 17.0  0    3    2    10.4      26
#&gt; 4 14.3   8  360 245 3.21 3.57 15.8  0    3    4    10.4      26
#&gt; 5 16.4   8  276 180 3.07 4.07 17.4  0    3    3    10.4      26
#&gt; 6 17.3   8  276 180 3.07 3.73 17.6  0    3    3    10.4      26
</code></pre>
<p>Alternative forms:</p>
<pre><code class="language-r">x &lt;- transformBy(&quot;vs&quot;, data=mtcars, 
                 min.mpg=min(mpg), max.mpg=max(mpg))
x &lt;- mtcars |&gt; transform_by(&quot;vs&quot;,
                             min.mpg=min(mpg), max.mpg=max(mpg))
</code></pre>
<h2 id="sec:lapplyby-and-lapply-by">lapplyBy() and lapply_by()</h2>
<p>This \code{lapplyBy} function is a wrapper for first splitting data
into a list according to the formula (using splitBy) and then applying
a function to each element of the list (using lapply).</p>
<pre><code class="language-r">lapplyBy(~vs, data=mtcars,
         FUN=function(d) lm(mpg~cyl, data=d)  |&gt; summary()  |&gt; coef())
#&gt; $`0`
#&gt;             Estimate Std. Error t value Pr(&gt;|t|)
#&gt; (Intercept)    36.93       3.69   10.01 2.73e-08
#&gt; cyl            -2.73       0.49   -5.56 4.27e-05
#&gt; 
#&gt; $`1`
#&gt;             Estimate Std. Error t value Pr(&gt;|t|)
#&gt; (Intercept)     41.9       5.78    7.26  0.00001
#&gt; cyl             -3.8       1.24   -3.07  0.00978
</code></pre>
<h1 id="chp:miscellaneous-utilities">Miscellaneous utilities</h1>
<h2 id="sec:firstobs-and-lastobs">firstobs() and lastobs()</h2>
<p>To obtain the indices of the first/last occurences of an item in a
vector do:</p>
<pre><code class="language-r">x &lt;- c(1, 1, 1, 2, 2, 2, 1, 1, 1, 3)
firstobs(x)
#&gt; [1]  1  4 10
lastobs(x)
#&gt; [1]  6  9 10
</code></pre>
<p>The same can be done on variables in a data frame, e.g.</p>
<pre><code class="language-r">firstobs(~vs, data=mtcars)
#&gt; [1] 1 3
lastobs(~vs, data=mtcars)
#&gt; [1] 31 32
</code></pre>
<p>\subsection{The \code{which.maxn()} and \code{which.minn()} functions}
\label{sec:whichmaxn}</p>
<p>The location of the \(n\) largest / smallest entries in a numeric vector
can be obtained with</p>
<pre><code class="language-r">x &lt;- c(1:4, 0:5, 11, NA, NA)
which.maxn(x, 3)
#&gt; [1] 11 10  4
which.minn(x, 5)
#&gt; [1] 5 1 6 2 7
</code></pre>
<h2 id="sec:subsequences-subseq">Subsequences - subSeq()</h2>
<p>Find (sub) sequences in a vector:</p>
<pre><code class="language-r">x &lt;- c(1, 1, 2, 2, 2, 1, 1, 3, 3, 3, 3, 1, 1, 1)
subSeq(x)
#&gt;   first last slength midpoint value
#&gt; 1     1    2       2        2     1
#&gt; 2     3    5       3        4     2
#&gt; 3     6    7       2        7     1
#&gt; 4     8   11       4       10     3
#&gt; 5    12   14       3       13     1
subSeq(x, item=1)
#&gt;   first last slength midpoint value
#&gt; 1     1    2       2        2     1
#&gt; 2     6    7       2        7     1
#&gt; 3    12   14       3       13     1
subSeq(letters[x])
#&gt;   first last slength midpoint value
#&gt; 1     1    2       2        2     a
#&gt; 2     3    5       3        4     b
#&gt; 3     6    7       2        7     a
#&gt; 4     8   11       4       10     c
#&gt; 5    12   14       3       13     a
subSeq(letters[x], item=&quot;a&quot;)
#&gt;   first last slength midpoint value
#&gt; 1     1    2       2        2     a
#&gt; 2     6    7       2        7     a
#&gt; 3    12   14       3       13     a
</code></pre>
<h2 id="sec:recoding-values-of-a-vector-recodevar">Recoding values of a vector - recodeVar()</h2>
<pre><code class="language-r">x &lt;- c(&quot;dec&quot;, &quot;jan&quot;, &quot;feb&quot;, &quot;mar&quot;, &quot;apr&quot;, &quot;may&quot;)
src1 &lt;- list(c(&quot;dec&quot;, &quot;jan&quot;, &quot;feb&quot;), c(&quot;mar&quot;, &quot;apr&quot;, &quot;may&quot;))
tgt1 &lt;- list(&quot;winter&quot;, &quot;spring&quot;)
recodeVar(x, src=src1, tgt=tgt1)
#&gt; [1] &quot;winter&quot; &quot;winter&quot; &quot;winter&quot; &quot;spring&quot; &quot;spring&quot; &quot;spring&quot;
</code></pre>
<h2 id="sec:renaming-columns-of-a-dataframe-or-matrix-renamecol">Renaming columns of a dataframe or matrix - renameCol()</h2>
<pre><code class="language-r">head(renameCol(mtcars, c(&quot;vs&quot;, &quot;mpg&quot;), c(&quot;vs_&quot;, &quot;mpg_&quot;)))
#&gt;                   mpg_ cyl disp  hp drat   wt qsec vs_ am gear carb
#&gt; Mazda RX4         21.0   6  160 110 3.90 2.62 16.5   0  1    4    4
#&gt; Mazda RX4 Wag     21.0   6  160 110 3.90 2.88 17.0   0  1    4    4
#&gt; Datsun 710        22.8   4  108  93 3.85 2.32 18.6   1  1    4    1
#&gt; Hornet 4 Drive    21.4   6  258 110 3.08 3.21 19.4   1  0    3    1
#&gt; Hornet Sportabout 18.7   8  360 175 3.15 3.44 17.0   0  0    3    2
#&gt; Valiant           18.1   6  225 105 2.76 3.46 20.2   1  0    3    1
</code></pre>
<h2 id="sec:time-since-an-event-timesinceevent">Time since an event - timeSinceEvent()</h2>
<p>Consider the vector</p>
<pre><code class="language-r">yvar &lt;- c(0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
</code></pre>
<p>Imagine that “1” indicates an event of some kind which takes place
at a certain time point. By default time points are assumed
equidistant but for illustration we define time time variable</p>
<pre><code class="language-r">tvar &lt;- seq_along(yvar) + c(0.1, 0.2)
</code></pre>
<p>Now we find time since event as</p>
<pre><code class="language-r">tse &lt;- timeSinceEvent(yvar, tvar)
#&gt; Warning: 'timeSinceEvent' is deprecated.
#&gt; Use 'time_since_event' instead.
#&gt; See help(&quot;Deprecated&quot;)
tse
#&gt;    yvar tvar abs.tse sign.tse ewin run tae  tbe
#&gt; 1     0  1.1     3.1     -3.1    1  NA  NA -3.1
#&gt; 2     0  2.2     2.0     -2.0    1  NA  NA -2.0
#&gt; 3     0  3.1     1.1     -1.1    1  NA  NA -1.1
#&gt; 4     1  4.2     0.0      0.0    1   1 0.0  0.0
#&gt; 5     0  5.1     0.9      0.9    1   1 0.9 -5.1
#&gt; 6     0  6.2     2.0      2.0    1   1 2.0 -4.0
#&gt; 7     0  7.1     2.9      2.9    1   1 2.9 -3.1
#&gt; 8     0  8.2     2.0     -2.0    2   1 4.0 -2.0
#&gt; 9     0  9.1     1.1     -1.1    2   1 4.9 -1.1
#&gt; 10    1 10.2     0.0      0.0    2   2 0.0  0.0
#&gt; 11    0 11.1     0.9      0.9    2   2 0.9 -3.1
#&gt; 12    0 12.2     2.0      2.0    2   2 2.0 -2.0
#&gt; 13    0 13.1     1.1     -1.1    3   2 2.9 -1.1
#&gt; 14    1 14.2     0.0      0.0    3   3 0.0  0.0
#&gt; 15    1 15.1     0.0      0.0    4   4 0.0  0.0
#&gt; 16    0 16.2     1.1      1.1    4   4 1.1   NA
#&gt; 17    0 17.1     2.0      2.0    4   4 2.0   NA
#&gt; 18    0 18.2     3.1      3.1    4   4 3.1   NA
#&gt; 19    0 19.1     4.0      4.0    4   4 4.0   NA
#&gt; 20    0 20.2     5.1      5.1    4   4 5.1   NA
</code></pre>
<p>The output reads as follows:
\begin{itemize}
\item \verb"abs.tse": Absolute time since (nearest) event.
\item \verb"sign.tse": Signed time since (nearest) event.
\item \verb"ewin": Event window: Gives a symmetric window around each event.
\item \verb"run": The value of \verb"run" is set to \(1\) when the first
event occurs and is increased by \(1\) at each subsequent event.
\item \verb”tae”: Time after event.
\item \verb”tbe”: Time before event.
\end{itemize}cYMR;`</p>
<pre><code class="language-r">plot(sign.tse ~ tvar, data=tse, type=&quot;b&quot;)
grid()
rug(tse$tvar[tse$yvar == 1], col=&quot;blue&quot;,lwd=4)
points(scale(tse$run), col=tse$run, lwd=2)
lines(abs.tse + .2 ~ tvar, data=tse, type=&quot;b&quot;,col=3)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-27" /></p>
<pre><code class="language-r">plot(tae ~ tvar, data=tse, ylim=c(-6,6), type=&quot;b&quot;)
grid()
lines(tbe ~ tvar, data=tse, type=&quot;b&quot;, col=&quot;red&quot;)
rug(tse$tvar[tse$yvar==1], col=&quot;blue&quot;, lwd=4)
lines(run ~ tvar, data=tse, col=&quot;cyan&quot;, lwd=2)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-28" /></p>
<pre><code class="language-r">plot(ewin ~ tvar, data=tse, ylim=c(1, 4))
rug(tse$tvar[tse$yvar==1], col=&quot;blue&quot;, lwd=4)
grid()
lines(run ~ tvar, data=tse, col=&quot;red&quot;)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-29" /></p>
<p>We may now f
ind times for which time since an event is at most 1 as</p>
<pre><code class="language-r">tse$tvar[tse$abs &lt;= 1]
#&gt; [1]  4.2  5.1 10.2 11.1 14.2 15.1
</code></pre>
<h2 id="sec:example-using-subseq-and-timesinceevent">Example: Using subSeq() and timeSinceEvent()</h2>
<p>Consider the \verb|lynx| data:</p>
<pre><code class="language-r">lynx &lt;- as.numeric(lynx)
tvar &lt;- 1821:1934
plot(tvar, lynx, type=&quot;l&quot;)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-31" /></p>
<p>Suppose we want to estimate the cycle lengths. One way of doing this
is as follows:</p>
<pre><code class="language-r">yyy &lt;- lynx &gt; mean(lynx)
head(yyy)
#&gt; [1] FALSE FALSE FALSE FALSE FALSE  TRUE
sss &lt;- subSeq(yyy, TRUE)
sss
#&gt;    first last slength midpoint value
#&gt; 1      6   10       5        8  TRUE
#&gt; 2     16   19       4       18  TRUE
#&gt; 3     27   28       2       28  TRUE
#&gt; 4     35   38       4       37  TRUE
#&gt; 5     44   47       4       46  TRUE
#&gt; 6     53   55       3       54  TRUE
#&gt; 7     63   66       4       65  TRUE
#&gt; 8     75   76       2       76  TRUE
#&gt; 9     83   87       5       85  TRUE
#&gt; 10    92   96       5       94  TRUE
#&gt; 11   104  106       3      105  TRUE
#&gt; 12   112  114       3      113  TRUE
</code></pre>
<pre><code class="language-r">plot(tvar, lynx, type=&quot;l&quot;)
rug(tvar[sss$midpoint], col=&quot;blue&quot;, lwd=4)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-33" /></p>
<p>Create the “event vector”</p>
<pre><code class="language-r">yvar &lt;- rep(0, length(lynx))
yvar[sss$midpoint] &lt;- 1
str(yvar)
#&gt;  num [1:114] 0 0 0 0 0 0 0 1 0 0 ...
</code></pre>
<pre><code class="language-r">tse &lt;- timeSinceEvent(yvar,tvar)
#&gt; Warning: 'timeSinceEvent' is deprecated.
#&gt; Use 'time_since_event' instead.
#&gt; See help(&quot;Deprecated&quot;)
head(tse, 20)
#&gt;    yvar tvar abs.tse sign.tse ewin run tae tbe
#&gt; 1     0 1821       7       -7    1  NA  NA  -7
#&gt; 2     0 1822       6       -6    1  NA  NA  -6
#&gt; 3     0 1823       5       -5    1  NA  NA  -5
#&gt; 4     0 1824       4       -4    1  NA  NA  -4
#&gt; 5     0 1825       3       -3    1  NA  NA  -3
#&gt; 6     0 1826       2       -2    1  NA  NA  -2
#&gt; 7     0 1827       1       -1    1  NA  NA  -1
#&gt; 8     1 1828       0        0    1   1   0   0
#&gt; 9     0 1829       1        1    1   1   1  -9
#&gt; 10    0 1830       2        2    1   1   2  -8
#&gt; 11    0 1831       3        3    1   1   3  -7
#&gt; 12    0 1832       4        4    1   1   4  -6
#&gt; 13    0 1833       5        5    1   1   5  -5
#&gt; 14    0 1834       4       -4    2   1   6  -4
#&gt; 15    0 1835       3       -3    2   1   7  -3
#&gt; 16    0 1836       2       -2    2   1   8  -2
#&gt; 17    0 1837       1       -1    2   1   9  -1
#&gt; 18    1 1838       0        0    2   2   0   0
#&gt; 19    0 1839       1        1    2   2   1  -9
#&gt; 20    0 1840       2        2    2   2   2  -8
</code></pre>
<p>We get two different (not that different) estimates of period
lengths:</p>
<pre><code class="language-r">len1 &lt;- tapply(tse$ewin, tse$ewin, length)
len2 &lt;- tapply(tse$run, tse$run, length)
c(median(len1), median(len2), mean(len1), mean(len2))
#&gt; [1] 9.50 9.00 9.50 8.92
</code></pre>
<p>We can overlay the cycles as:</p>
<pre><code class="language-r">tse$lynx &lt;- lynx
tse2 &lt;- na.omit(tse)
plot(lynx ~ tae, data=tse2)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-37" /></p>
<pre><code class="language-r">plot(tvar, lynx, type=&quot;l&quot;, lty=2)
mm &lt;- lm(lynx ~ tae + I(tae^2) + I(tae^3), data=tse2)
lines(fitted(mm) ~ tvar, data=tse2, col=&quot;red&quot;)
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-38" /></p>
<p>\section{Acknowledgements}
\label{discussion}</p>
<p>Credit is due to
Dennis Chabot, Gabor Grothendieck, Paul Murrell and Jim Robison-Cox for
reporting various bugs and making various suggestions to the
functionality in the \doby{} package.</p>
<!-- ```  -->
<!-- \end{document} -->
<!-- % \appendix -->
<!-- % \section{The data} -->
<!-- % \label{sec:appdata} -->
<!-- % The reduced \code{C02} are: -->
<!-- % ```{r} -->
<!-- % CO2 -->
<!-- % ```  -->
<!-- % The reduced \code{airquality} data are: -->
<!-- % ```{r} -->
<!-- % head(airquality, n=20) -->
<!-- % ```  -->
<!-- % On the to-do-list is to allow to write as follows (but this feature is not -->
<!-- % implemented yet): -->
<!-- % <<eval=F>>=  -->
<!-- % summaryBy(list(c("conc", "uptake", lu="log(uptake)"), "Plant"),  -->
<!-- %           data=CO2, FUN=c(mean, sd)) -->
<!-- % ``` -->
<!-- % Inspired by the \pkg{dplyr} package, there is a \verb|summary_by| function which -->
<!-- % does the samme as \summaryby{} but with the data argument being the first so -->
<!-- % that one may write -->
<!-- % <<results=hide>>=  -->
<!-- % CO2 |> summary_by(cbind(conc, uptake, lu=log(uptake)) ~ Plant,  -->
<!-- %                    FUN=myfun1) -->
<!-- % ``` -->
<!-- % which is the same as writing: -->
<!-- % <<results=hide>>=  -->
<!-- % summary_by(CO2, cbind(conc, uptake, lu=log(uptake)) ~ Plant,  -->
<!-- %            FUN=myfun1) -->
<!-- % ``` -->
<!-- %% Same as -->
<!-- %% <<results=hide>>=  -->
<!-- %% aggregate(cbind(conc, uptake, log(uptake)) ~ Plant, data=CO2, FUN=myfun1) -->
<!-- %% aggregate(conc ~ Plant, data=CO2, FUN=mean) -->
<!-- %% ``` -->
<!-- %%  -->
<!-- %%<< >>=  -->
<!-- %%library(magrittr) -->
<!-- %%CO2 |> summary_by(cbind(conc, uptake) ~ Plant, FUN=myfun1) -->
<!-- %%``` -->
<!-- %% -->
<!-- %% -->
<!-- %%<< >>=  -->
<!-- %%summaryBy2( list(c("conc","uptake"), "Plant"), data=CO2, FUN=myfun1) -->
<!-- %%``` -->
<!-- %% -->
<!-- %% -->
<!-- %%Above \code{myfun1()} is a function that returns a vector of named -->
<!-- %%values. Note that the values returned by the function has been named as -->
<!-- %%\code{m} and \code{v}. An alternative specification is: -->
<!-- %% -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy( list(c("conc","uptake"), "Plant"), data=CO2, FUN=myfun1) -->
<!-- %%```  -->
<!-- %% -->
<!-- %%If the result of the function(s) are not named, then the names in the -->
<!-- %%output data in general become less intuitive: -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%myfun2 <- function(x){c(mean(x), var(x))} -->
<!-- %%summaryBy( conc + uptake ~ Plant, data=CO2, FUN=myfun2) -->
<!-- %%```  -->
<!-- %% -->
<!-- %% -->
<!-- %%Another usage is to specify a list of functions each of which returns -->
<!-- %%a single value: -->
<!-- %% -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryByOLD( conc + uptake ~ Plant, data=CO2, FUN=list( mean, var ) ) -->
<!-- %%```  -->
<!-- %% -->
<!-- %%Notice that if we specify a list of functions of which some returns a -->
<!-- %%vector with more than one element, then the proper names are not -->
<!-- %%retrieved: -->
<!-- %%%%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(uptake~Plant, data=CO2, FUN=list( mean, var, myfun1 )) -->
<!-- %%```  -->
<!-- %% -->
<!-- %%One can ``hard code'' the function names into the output as -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryByOLD(uptake~Plant, data=CO2, FUN=list( mean, var, myfun1 ), -->
<!-- %%          fun.names=c("mean","var","mm","vv")) -->
<!-- %%```  -->
<!-- %% -->
<!-- % \subsubsection{Statistics on functions of data} -->
<!-- % \label{sec:xxx} -->
<!-- % We may want to calculate the mean and variance for the logarithm of -->
<!-- % \code{uptake}, for \code{uptake}+\code{conc} (not likely to be a -->
<!-- % useful statistic) as well as for \code{uptake} and -->
<!-- % \code{conc}. This can be achieved as: -->
<!-- % ``` -->
<!-- % ```{r} -->
<!-- % summaryByOLD(log(uptake) + I(conc+uptake) + conc+uptake ~ Plant, data=CO2, -->
<!-- %           FUN=myfun1) -->
<!-- % ```  -->
<!-- %% -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(cbind(lu=log(uptake), conc + uptake, conc, uptake) ~ Plant, data=CO2, -->
<!-- %%          FUN=myfun1) -->
<!-- %%```  -->
<!-- %% -->
<!-- %% -->
<!-- %% -->
<!-- %%The names of the variables become involved with this. The user may -->
<!-- %%control the names of the variables directly: -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(log(uptake) + I(conc+uptake) + conc + uptake ~ Plant, data=CO2, -->
<!-- %%          FUN=myfun1, var.names=c("log.upt", "conc+upt", "conc", "upt")) -->
<!-- %%```  -->
<!-- %% -->
<!-- %%If one does not want output variables to contain parentheses then -->
<!-- %%setting \code{p2d=TRUE} causes the parentheses to be replaced by dots -->
<!-- %%(``.''). -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(log(uptake)+I(conc+uptake)~Plant, data=CO2, p2d=TRUE, -->
<!-- %%FUN=myfun1) -->
<!-- %%```  -->
<!-- %% -->
<!-- %% -->
<!-- %% -->
<!-- %% -->
<!-- %% -->
<!-- %%\subsubsection{Copying variables out with the \code{id} argument} -->
<!-- %%\label{sec:xxx} -->
<!-- %% -->
<!-- %%To get the value of the \code{Type} and \code{Treat} in the first row of the -->
<!-- %%groups (defined by the values of \code{Plant}) copied to the output -->
<!-- %%dataframe we use the \code{id} argument in one of the following forms: -->
<!-- %% -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(conc+uptake~Plant, data=CO2, FUN=myfun1, id=~Type+Treat) -->
<!-- %%summaryBy(conc+uptake~Plant, data=CO2, FUN=myfun1, id=c("Type","Treat")) -->
<!-- %%```  -->
<!-- %% -->
<!-- %%\subsubsection{Using '.' on the left hand side of a formula} -->
<!-- %%\label{sec:xxx} -->
<!-- %% -->
<!-- %%It is possible  to use the dot (".") on the left hand side of -->
<!-- %%the formula. The dot means "all numerical variables which do not -->
<!-- %%appear elsewhere" (i.e.\ on the right hand side of the formula and in -->
<!-- %%the \code{id} statement): -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(log(uptake)+I(conc+uptake)+. ~Plant, data=CO2, FUN=myfun1) -->
<!-- %%```  -->
<!-- %% -->
<!-- %% -->
<!-- %%\subsubsection{Using '.' on the right hand side of a formula} -->
<!-- %%\label{sec:xxx} -->
<!-- %% -->
<!-- %%The dot (".") can also be used on the right hand side of the formula -->
<!-- %%where it refers to "all non--numerical variables which are not -->
<!-- %%specified elsewhere": -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(log(uptake) ~Plant+., data=CO2, FUN=myfun1) -->
<!-- %%```  -->
<!-- %% -->
<!-- %%\subsubsection{Using '1' on the right hand side of the formula} -->
<!-- %%\label{sec:xxx} -->
<!-- %% -->
<!-- %%Using 1 on the -->
<!-- %%  right hand side means no grouping: -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(log(uptake) ~ 1, data=CO2, FUN=myfun1) -->
<!-- %%```  -->
<!-- %% -->
<!-- %% -->
<!-- %% -->
<!-- %%\subsubsection{Preserving names of variables using \code{keep.names}} -->
<!-- %%\label{sec:xxx} -->
<!-- %%If the function applied to data only returns one value, it is possible -->
<!-- %%to force that the summary variables retain the original names by -->
<!-- %%setting \code{keep.names=TRUE}. A -->
<!-- %%typical use of this could be -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%summaryBy(conc+uptake+log(uptake)~Plant, -->
<!-- %%data=CO2, FUN=mean, id=~Type+Treat, keep.names=TRUE) -->
<!-- %%```  -->
<!-- %% -->
<!-- %%\subsection{The \code{splitBy} function} -->
<!-- %%\label{splitBy} -->
<!-- %% -->
<!-- %%Suppose we want to split the \code{airquality} data into a list of dataframes, e.g.\ one -->
<!-- %%dataframe for each month. This can be achieved by: -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%x<-splitBy(~Month, data=airquality) -->
<!-- %%x -->
<!-- %%```  -->
<!-- %%Hence for month 5, the relevant entry-name in the list is '5' and this -->
<!-- %%part of data  can -->
<!-- %%be extracted as -->
<!-- %%``` -->
<!-- %%%<<eval=F, results=hide>>= -->
<!-- %%%x[['5']] -->
<!-- %%%```  -->
<!-- %% -->
<!-- %%Information about the grouping is stored as a dataframe -->
<!-- %%in an attribute called \code{groupid} and can be retrieved with: -->
<!-- %%```{r} -->
<!-- %%attr(x,"groupid") -->
<!-- %%```  -->
<!-- %% -->
<!-- %% \subsection{The \code{sampleBy} function} -->
<!-- %% \label{sampleBy} -->
<!-- %%  -->
<!-- %% Suppose we want a random sample of 50 \% of the observations from a -->
<!-- %% dataframe. This can be achieved with: -->
<!-- %% ``` -->
<!-- %% <<results=hide>>= -->
<!-- %% sampleBy(~1, frac=0.5, data=airquality) -->
<!-- %% ```  -->
<!-- %%  -->
<!-- %% Suppose instead that we want a  systematic sample of  every fifth -->
<!-- %% observation within each month. This is achieved with: -->
<!-- %% ``` -->
<!-- %% <<results=hide>>= -->
<!-- %% sampleBy(~Month, frac=0.2, data=airquality,systematic=T) -->
<!-- %% ```  -->
<!-- %%  -->
<!-- %%  -->
<!-- %% Inspired by the \pkg{dplyr} package, there is an \verb|order_by| function -->
<!-- %% << >>=  -->
<!-- %% x5 <- airquality |> order_by(c("Temp", "Month")) -->
<!-- %% x6 <- airquality |> order_by(c("-Temp", "Month")) -->
<!-- %% ``` -->
<!-- %% which is the same as -->
<!-- %% << >>=  -->
<!-- %% x5 <- order_by(airquality, c("Temp", "Month")) -->
<!-- %% x6 <- order_by(airquality, c("-Temp", "Month")) -->
<!-- %% ``` -->
<!-- %% <<echo=F, results=hide>>=  -->
<!-- %% c(all.equal(x1, x3), all.equal(x1, x5),  -->
<!-- %%   all.equal(x2, x4), all.equal(x2, x6)) -->
<!-- %% ``` -->
<!-- %% Suppose we want to calculate the weekwise feed efficiency of the pigs -->
<!-- %% in the \code{dietox} data, i.e. weight gain divided by feed intake. -->
<!-- %% ``` -->
<!-- %% ```{r} -->
<!-- %% data(dietox) -->
<!-- %% dietox <- orderBy(~Pig+Time, data=dietox) -->
<!-- %% FEfun  <- function(d){c(NA, diff(d$Weight)/diff(d$Feed))} -->
<!-- %% v      <- lapplyBy(~Pig, data=dietox, FEfun) -->
<!-- %% dietox$FE <- unlist(v) -->
<!-- %% ```  -->
<!-- %%  -->
<!-- %% Technically, the above is the same as -->
<!-- %% ``` -->
<!-- %% ```{r} -->
<!-- %% dietox <- orderBy(~Pig+Time, data=dietox) -->
<!-- %% wdata  <- splitBy(~Pig, data=dietox) -->
<!-- %% v      <- lapply(wdata, FEfun) -->
<!-- %% dietox$FE <- unlist(v) -->
<!-- %% ```  -->
<!-- %%  -->
<!-- %% -->
<!-- %% \subsection{The \code{scaleBy} function} -->
<!-- %%  -->
<!-- %% Standardize the \code{iris} data within each value of \code{"Species"}: -->
<!-- %% ``` -->
<!-- %% ```{r} -->
<!-- %% x <- scaleBy(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) ~ Species,      -->
<!-- %%              data=iris) -->
<!-- %% lapply(x, head, 4) -->
<!-- %% head(iris) -->
<!-- %% ``` def -->
<!-- %%  -->
<!-- %% Alternative forms: -->
<!-- %% << >>=  -->
<!-- %% x <- scaleBy( list(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), -->
<!-- %%                  "Species"),     data=iris) -->
<!-- %% x <- scaleBy(. ~ Species, data=iris) -->
<!-- %% x <- scaleBy(list(".", "Species"),  data=iris) -->
<!-- %% x <- iris  >% scale_by(. ~ Species) -->
<!-- %% ``` -->
<!-- %%  -->
<!-- %%\section{Create By--functions on the fly} -->
<!-- %%\label{sec:create-functions-fly} -->
<!-- %% -->
<!-- %%Create a function for creating groupwise t-tests -->
<!-- %% -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%mydata <- data.frame(y=rnorm(32), x=rnorm(32), -->
<!-- %%g1=factor(rep(c(1,2),each=16)), g2=factor(rep(c(1,2), each=8)), -->
<!-- %%g3=factor(rep(c(1,2),each=4))) -->
<!-- %%head(mydata) -->
<!-- %%```  -->
<!-- %% -->
<!-- %% -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%## Based on the formula interface to t.test -->
<!-- %%t.testBy1 <- function(formula, group, data, ...){ -->
<!-- %%  formulaFunBy(formula, group, data, FUN=t.test, class="t.testBy1", ...) -->
<!-- %%} -->
<!-- %%## Based on the default interface to t.test -->
<!-- %%t.testBy2 <- function(formula, group, data, ...){ -->
<!-- %%  xyFunBy(formula, group, data, FUN=t.test, class="t.testBy1", ...) -->
<!-- %%} -->
<!-- %%```  -->
<!-- %% -->
<!-- %%Notice: The optional \code{class} argument will facilitate that you -->
<!-- %%create your own print / summary methods etc. -->
<!-- %% -->
<!-- %%``` -->
<!-- %%```{r} -->
<!-- %%t.testBy1(y~g1, ~g2, data=mydata) -->
<!-- %%t.testBy2(y~x,  ~g2, data=mydata) -->
<!-- %%```  -->
<!-- %% -->
</div>
</body>
</html>