1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
## here the multiple contrast test related functions
## performs multiple contrast test (MCP part of MCPMod)
MCTtest <- function(dose, resp, data = NULL, models, S = NULL,
type = c("normal", "general"),
addCovars = ~1, placAdj = FALSE,
alpha = 0.025, df = NULL, critV = NULL, pVal = TRUE,
alternative = c("one.sided", "two.sided"),
na.action = na.fail, mvtcontrol = mvtnorm.control(),
contMat = NULL){
## perform multiple contrast test
type <- match.arg(type)
alternative <- match.arg(alternative)
## check for valid arguments
cal <- as.character(match.call())
lst <- checkAnalyArgs(dose, resp, data, S, type,
addCovars, placAdj, na.action, cal)
dd <- lst$dd;type <- lst$type;S <- lst$S
doseNam <- lst$doseNam;respNam <- lst$respNam
## calculate optimal contrasts and test-statistics
doses <- unique(dd[[doseNam]])
k <- length(doses)
if(type == "normal"){
dd[, doseNam] <- as.factor(dd[, doseNam])
form <- paste(respNam, "~", doseNam, "+", addCovars[2], "-1", sep="")
lm.fit <- lm(as.formula(form), data = dd)
est <- coef(lm.fit)[1:k]
vc <- vcov(lm.fit)[1:k, 1:k]
df <- lm.fit$df.residual
} else {
est <- dd[[respNam]]
vc <- S
if(is.null(df))
df <- Inf
}
if(is.null(contMat)){ # calculate optimal contrasts
contMat <- optContr(models, doses, S=vc, placAdj=placAdj)$contMat
rownames(contMat) <- doses
} else { # contrast matrix specified
if(inherits(contMat, "optContr"))
contMat <- contMat$contMat
if(nrow(contMat) != length(est))
stop("contMat of incorrect dimensions")
}
ct <- as.vector(est %*% contMat)
covMat <- t(contMat) %*% vc %*% contMat
den <- sqrt(diag(covMat))
tStat <- ct/den
if(alternative == "two.sided"){
tStat <- abs(tStat)
}
corMat <- cov2cor(covMat)
if(is.null(critV)){
if(!pVal){
stop("either p-values or critical value need to be calculated.")
}
} else if(is.logical(critV) & critV == TRUE){
critV <- critVal(corMat, alpha, df, alternative, mvtcontrol)
attr(critV, "Calc") <- TRUE # determines whether cVal was calculated
} else {
pVal <- FALSE # pvals are not calculated if critV is supplied
attr(critV, "Calc") <- FALSE
}
if(pVal){
pVals <- pValues(contMat, corMat, df, tStat,
alternative, mvtcontrol)
}
res <- list(contMat = contMat, corMat = corMat, tStat = tStat,
alpha = alpha, alternative = alternative[1])
if(pVal)
attr(res$tStat, "pVal") <- pVals
res$critVal <- critV
class(res) <- "MCTtest"
res
}
print.MCTtest <- function(x, digits = 3, eps = 1e-3, ...){
cat("Multiple Contrast Test\n")
cat("\n","Contrasts:","\n", sep="")
print(round(x$contMat, digits))
cat("\n","Contrast Correlation:","\n", sep="")
print(round(x$corMat, digits))
cat("\n","Multiple Contrast Test:","\n",sep="")
ord <- rev(order(x$tStat))
if(!any(is.null(attr(x$tStat, "pVal")))){
pval <- format.pval(attr(x$tStat, "pVal"),
digits = digits, eps = eps)
dfrm <- data.frame(round(x$tStat, digits)[ord],
pval[ord])
names(dfrm) <- c("t-Stat", "adj-p")
} else {
dfrm <- data.frame(round(x$tStat, digits)[ord])
names(dfrm) <- c("t-Stat")
}
print(dfrm)
if(!is.null(x$critVal)){
twoSide <- x$alternative == "two.sided"
vec <- c(" one-sided)", " two-sided)")
cat("\n","Critical value: ", round(x$critVal, digits), sep="")
if(attr(x$critVal, "Calc")){
cat(" (alpha = ", x$alpha,",", vec[twoSide+1], "\n", sep="")
} else {
cat("\n")
}
}
}
critVal <- function(corMat, alpha = 0.025, df = NULL,
alternative = c("one.sided", "two.sided"),
control = mvtnorm.control()){
## calculate critical value
alternative <- match.arg(alternative)
if(missing(corMat))
stop("corMat needs to be specified")
if(is.null(df))
stop("degrees of freedom need to be specified")
tail <- ifelse(alternative[1] == "two.sided",
"both.tails", "lower.tail")
if (!missing(control)) {
if(!is.list(control)) {
stop("when specified, 'control' must be a list")
}
ctrl <- do.call("mvtnorm.control", control)
} else {
ctrl <- control
}
if(!is.finite(df)) # normal case
df <- 0
qmvtCall <- c(list(1-alpha, tail = tail, df = df, corr = corMat,
algorithm = ctrl, interval = ctrl$interval))
do.call("qmvt", qmvtCall)$quantile
}
checkAnalyArgs <- function(dose, resp, data, S, type,
addCovars, placAdj, na.action, cal){
if(class(addCovars) != "formula")
stop("addCovars argument needs to be of class formula")
if(class(placAdj) != "logical")
stop("placAdj argument needs to be of class logical")
if(placAdj){
if(type == "normal")
stop("\"placAdj == TRUE\" only allowed for type = \"general\"")
if(any(dose == 0))
stop("If placAdj == TRUE there should be no placebo group")
}
if(!is.null(data)){ # data handed over in data frame
if(!is.data.frame(data))
stop("data argument needs to be a data frame")
nams <- c(cal[2], cal[3], all.vars(addCovars))
ind <- match(nams, names(data))
if (any(is.na(ind)))
stop("variable(s): ", paste(nams[is.na(ind)], collapse= ", "), " not found in ", cal[4])
dd <- na.action(data[,nams])
} else { # data handed over via vectors
if(addCovars != ~1)
stop("need to hand over data and covariates in data frame")
if(length(dose) != length(resp))
stop(cal[2], " and ", cal[3], " not of equal length")
dd <- na.action(data.frame(dose, resp))
cal[2:3] <- gsub("\\$", "", cal[2:3])
cal[2:3] <- gsub("\\[|\\]", "", cal[2:3])
colnames(dd) <- cal[2:3]
}
doseNam <- cal[2];respNam <- cal[3]
if(any(dd[[doseNam]] < -.Machine$double.eps))
stop("dose values need to be non-negative")
if(!is.numeric(dd[[doseNam]]))
stop("dose variable needs to be numeric")
if(!is.numeric(dd[[respNam]]))
stop("response variable needs to be numeric")
## check type related arguments
if(type == "general" & is.null(S))
stop("S argument missing")
if(type == "normal" & !is.null(S))
message("Message: S argument ignored for type == \"normal\"\n")
if(type == "general" & addCovars != ~1)
message("Message: addCovars argument ignored for type == \"general\"")
if(!is.null(S)){
if(!is.matrix(S))
stop("S needs to be of class matrix")
nD <- length(dd[[doseNam]])
if(nrow(S) != nD | ncol(S) != nD)
stop("S and dose have non-confirming size")
}
ord <- order(dd[[doseNam]])
dd <- dd[ord, ]
Sout <- NULL
if(type == "general")
Sout <- S[ord, ord]
return(list(dd=dd, type = type, S = Sout, ord=ord,
doseNam=doseNam, respNam=respNam))
}
pValues <- function(contMat, corMat, df, tStat,
alternative = c("one.sided", "two.sided"),
control = mvtnorm.control()){
## function to calculate p-values
nD <- nrow(contMat)
nMod <- ncol(contMat)
if(missing(corMat))
stop("corMat needs to be specified")
if(missing(df))
stop("degrees of freedom need to be specified")
if(length(tStat) != nMod)
stop("tStat needs to have length equal to the number of models")
alternative <- match.arg(alternative)
ctrl <- mvtnorm.control()
if (!missing(control)) {
control <- as.list(control)
ctrl[names(control)] <- control
}
if(!is.finite(df)) # normal case
df <- 0
lower <- switch(alternative[1],
one.sided = matrix(rep(-Inf, nMod^2), nrow = nMod),
two.sided = matrix(rep(-tStat, each = nMod), nrow = nMod))
upper <- switch(alternative[1],
one.sided = matrix(rep(tStat, each = nMod), nrow = nMod),
two.sided = matrix(rep(tStat, each = nMod), nrow = nMod))
pVals <- numeric(nMod)
for(i in 1:nMod){
tmp <- 1 - pmvt(lower[,i], upper[,i], df = df,
corr = corMat, algorithm = ctrl)
pVals[i] <- tmp
if(attr(tmp,"msg") != "Normal Completion"){
warning(sprintf("Warning from mvtnorm::pmvt: %s.", attr(tmp, "msg")))
if(attr(tmp, "msg") == "Covariance matrix not positive semidefinite"){
warning("Setting calculated p-value to NA")
pVals[i] <- NA
}
}
}
pVals
}
|