1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
|
## functions related to creating, plotting candidate model sets
modCount <- function(models, fullMod = FALSE){
## counts the number of models in a candidate model-list
if(!fullMod){
nr <- lapply(names(models), function(x){
xx <- models[[x]]
if(is.null(xx))
return(1)
if(is.element(x, c("emax", "quadratic", "exponential")))
return(length(xx))
if(is.element(x, c("sigEmax", "logistic", "betaMod")))
return(length(xx)/2)
if(x == "linInt"){
if(is.vector(xx))
return(1)
if(is.matrix(xx))
return(nrow(xx))
}
})
} else {
nr <- lapply(models, function(x){
if(is.vector(x))
return(1)
if(is.matrix(x))
return(nrow(x))
})
}
Reduce("+",nr)
}
getAddArgs <- function(addArgs, doses = NULL){
if(!is.null(doses)){
addArgs0 <- list(scal = 1.2*max(doses), off = 0.01*max(doses))
} else {
addArgs0 <- list(scal = NULL, off = NULL)
}
if(!is.null(addArgs)){
if(!is.list(addArgs))
stop("addArgs needs to be of class list")
namA <- names(addArgs)
if(!all(namA %in% c("scal", "off")))
stop("addArgs need to have entries named scal and/or off")
addArgs0[namA] <- addArgs
if(length(addArgs0$scal) > 1 | length(addArgs0$off) > 1)
stop("scal and/or off need to be of length 1")
}
list(scal=addArgs0$scal, off=addArgs0$off)
}
checkEntries <- function(modL, doses, fullMod){
biModels <- c("emax", "linlog", "linear", "quadratic",
"exponential", "logistic", "betaMod", "sigEmax",
"linInt")
checkNam <- function(nam){
if(is.na(match(nam, biModels)))
stop("Invalid model specified: ", nam)
}
checkStand <- function(nam){
pars <- modL[[nam]]
## checks for as many invalid values as possible
if(!is.numeric(pars) & !is.null(pars))
stop("entries in Mods need to be of type: NULL, or numeric.\n",
" invalid type specified for model ", nam)
if((nam %in% c("linear", "linlog")) & !is.null(pars))
stop("For model ", nam, ", model entry needs to be equal to NULL")
if((nam %in% c("emax", "sigEmax", "betaMod", "logistic", "exponential")) & any(pars <= 0))
stop("For model ", nam, " model entries needs to be positive")
if((nam %in% c("emax", "exponential", "quadratic")) & is.matrix(nam))
stop("For model ", nam, " parameters need to specified in a vector")
if((nam %in% c("sigEmax", "betaMod", "logistic"))){
if(is.matrix(pars)){
if(ncol(pars) != 2)
stop("Matrix for ", nam, " model needs to have two columns")
}
if(length(pars)%%2 > 0)
stop("Specified parameters need to be a multiple of two for ", nam, " model")
}
if(nam == "linInt"){
if(is.matrix(pars)){
len <- ncol(pars)
} else {
len <- length(pars)
}
if(len != (length(doses)-1))
stop("Need to provide guesstimates for each active dose. ", len,
" specified, need ", length(doses)-1, ".")
}
}
if(!fullMod){
lapply(names(modL), function(nam){
checkNam(nam)
checkStand(nam)
})
} else {
lapply(names(modL), function(nam){
checkNam(nam)
})
}
}
Mods <- function(..., doses, placEff = 0, maxEff, direction = c("increasing", "decreasing"),
addArgs = NULL, fullMod = FALSE){
if(missing(doses))
stop("Need to specify dose levels")
doses <- sort(doses)
if(doses[1] < -.Machine$double.eps ^ 0.5)
stop("Only dose-levels >= 0 allowed")
if(abs(doses[1]) > .Machine$double.eps ^ 0.5)
stop("Need to include placebo dose")
## check for adequate addArgs
lst <- getAddArgs(addArgs, doses)
if(lst$scal < max(doses))
stop("\"scal\" parameter needs to be >= max(doses)")
if(lst$scal < 0)
stop("\"scal\" parameter needs to be positive")
if(lst$off < 0)
stop("\"off\" parameter needs to be positive")
## obtain model list
modL <- list(...)
nams <- names(modL)
## perform some simple check for a valid standModel list
if(length(nams) != length(unique(nams)))
stop("only one list entry allowed for each model class")
checkEntries(modL, doses, fullMod)
if(!fullMod){ ## assume standardized models
direction <- match.arg(direction)
if (missing(maxEff))
maxEff <- ifelse(direction == "increasing", 1, -1)
modL <- fullMod(modL, doses, placEff, maxEff, lst$scal, lst$off)
} else {
## calculate placEff and maxEff from model pars. For unimodal
## models maxEff determination might fail if the dose with maximum
## efficacy is not among those used!
resp <- calcResp(modL, doses, lst$off, lst$scal, lst$nodes)
placEff <- resp[1,]
maxEff <- apply(resp, 2, function(x){
difs <- x-x[1]
indMax <- which.max(difs)
indMin <- which.min(difs)
if(difs[indMax] > 0)
return(difs[indMax])
if(difs[indMin] < 0)
return(difs[indMin])
})
}
attr(modL, "placEff") <- placEff
attr(modL, "maxEff") <- maxEff
direc <- unique(ifelse(maxEff > 0, "increasing", "decreasing"))
if(length(direc) > 1)
stop("Inconsistent direction of effect specified in maxEff")
attr(modL, "direction") <- direc
class(modL) <- "Mods"
attr(modL, "doses") <- doses
attr(modL, "scal") <- lst$scal
attr(modL, "off") <- lst$off
return(modL)
}
## calculates parameters for all models in the candidate set returns a
## list with all model parameters.
fullMod <- function(models, doses, placEff, maxEff, scal, off){
## check for valid placEff and maxEff arguments
nM <- modCount(models, fullMod = FALSE)
if(length(placEff) > 1){
if(length(placEff) != nM)
stop("placEff needs to be of length 1 or length equal to the number of models")
} else {
placEff <- rep(placEff, nM)
}
if(length(maxEff) > 1){
if(length(maxEff) != nM)
stop("maxEff needs to be of length 1 or length equal to the number of models")
} else {
maxEff <- rep(maxEff, nM)
}
nodes <- doses # nodes parameter for linInt
## calculate linear parameters of models (with standardized
## parameters as in models), to achieve the specified placEff and maxEff
complMod <- vector("list", length=length(models))
i <- 0;z <- 1
for(nm in names(models)){
pars <- models[[nm]]
if(is.null(pars)){ ## linear and linlog
Pars <- getLinPars(nm, doses, NULL, placEff[z], maxEff[z], off); i <- i+1; z <- z+1
}
if(is.element(nm,c("emax", "exponential", "quadratic"))){
nmod <- length(pars)
if(nmod > 1){
Pars <- matrix(ncol=3, nrow=nmod)
for(j in 1:length(pars)){
tmp <- getLinPars(nm, doses, as.vector(pars[j]), placEff[z], maxEff[z])
Pars[j,] <- tmp
z <- z+1
}
colnames(Pars) <- names(tmp)
rownames(Pars) <- 1:length(pars)
i <- i+1
} else {
Pars <- getLinPars(nm, doses, as.vector(pars), placEff[z], maxEff[z])
i <- i+1; z <- z+1
}
}
if(is.element(nm,c("logistic", "betaMod", "sigEmax"))){
if(is.matrix(pars)){
Pars <- matrix(ncol=4, nrow=nrow(pars))
for(j in 1:nrow(pars)){
tmp <- getLinPars(nm, doses, as.vector(pars[j,]), placEff[z], maxEff[z])
Pars[j,] <- tmp
z <- z+1
}
colnames(Pars) <- names(tmp)
rownames(Pars) <- 1:nrow(pars)
i <- i+1
} else {
Pars <- getLinPars(nm, doses, as.vector(pars), placEff[z], maxEff[z]); i <- i+1; z <- z+1
}
}
if(nm == "linInt"){
if(is.matrix(pars)){
Pars <- matrix(ncol=length(nodes), nrow=nrow(pars))
for(j in 1:nrow(pars)){
Pars[j,] <- getLinPars(nm, doses, as.vector(pars[j,]), placEff[z], maxEff[z])
z <- z+1
}
colnames(Pars) <- paste("d", doses, sep="")
rownames(Pars) <- 1:nrow(pars)
i <- i+1
} else {
Pars <- getLinPars(nm, doses, as.vector(pars), placEff[z], maxEff[z]); i <- i+1; z <- z+1
names(Pars) <- paste("d", doses, sep="")
}
}
complMod[[i]] <- Pars
}
names(complMod) <- names(models)
complMod
}
plot.Mods <- function(x, nPoints = 200, superpose = FALSE, xlab = "Dose",
ylab = "Model means", modNams = NULL, plotTD = FALSE, Delta, ...){
plotModels(x, nPoints = nPoints, superpose = superpose, xlab = xlab,
ylab = ylab, modNams = modNams, plotTD = plotTD, Delta, ...)
}
plotModels <- function(models, nPoints = 200, superpose = FALSE,
xlab = "Dose", ylab = "Model means",
modNams = NULL, plotTD = FALSE, Delta, ...){
## models is always assumed to be of class Mods
doses <- nodes <- attr(models, "doses")
placEff <- attr(models, "placEff")
maxEff <- attr(models, "maxEff")
off <- attr(models, "off")
scal <- attr(models, "scal")
if(!inherits(models, "Mods"))
stop("\"models\" needs to be of class Mods")
nM <- modCount(models, fullMod = TRUE)
if(nM > 50)
stop("too many models in Mods object to plot (> 50 models).")
doseSeq <- sort(union(seq(min(doses), max(doses), length = nPoints),
doses))
resp <- calcResp(models, doseSeq, off, scal, nodes)
pdos <- NULL
if(plotTD){ # also include TD in plot
if(missing(Delta))
stop("need Delta, if \"plotTD = TRUE\"")
ind <- maxEff > 0
if(length(unique(ind)) > 1)
stop("inconsistent directions not possible, when \"plotTD = TRUE\"")
direction <- ifelse(all(ind), "increasing", "decreasing")
pdos <- TD(models, Delta, direction = direction)
yax <- rep(ifelse(direction == "increasing", Delta, -Delta), length(pdos))
}
if(length(placEff) == 1)
placEff <- rep(placEff, nM)
if(length(maxEff) == 1)
maxEff <- rep(maxEff, nM)
if(is.null(modNams)){ # use alternative model names
nams <- dimnames(resp)[[2]]
} else {
if(length(modNams) != nM)
stop("specified model-names in \"modNams\" of invalid length")
nams <- modNams
}
modelfact <- factor(rep(nams, each = length(doseSeq)),
levels = nams)
if(superpose){
respdata <- data.frame(response = c(resp),
dose = rep(doseSeq, ncol(resp)),
model = modelfact)
spL <- trellis.par.get("superpose.line")
spL$lty <- rep(spL$lty, nM%/%length(spL$lty) + 1)[1:nM]
spL$lwd <- rep(spL$lwd, nM%/%length(spL$lwd) + 1)[1:nM]
spL$col <- rep(spL$col, nM%/%length(spL$col) + 1)[1:nM]
## data for plotting function within panel
panDat <- list(placEff = placEff, maxEff = maxEff, doses = doses)
## number of columns
nCol <- ifelse(nM < 5, nM, min(4,ceiling(nM/min(ceiling(nM/4),3))))
key <- list(lines = spL, transparent = TRUE,
text = list(nams, cex = 0.9),
columns = nCol)
ltplot <- xyplot(response ~ dose, data = respdata, subscripts = TRUE,
groups = respdata$model, panel.data = panDat, xlab = xlab,
ylab = ylab,
panel = function(x, y, subscripts, groups, ..., panel.data) {
panel.grid(h=-1, v=-1, col = "lightgrey", lty=2)
panel.abline(h = c(panel.data$placEff, panel.data$placEff +
panel.data$maxEff), lty = 2)
panel.superpose(x, y, subscripts, groups, type = "l", ...)
ind <- !is.na(match(x, panel.data$doses))
panel.superpose(x[ind], y[ind], subscripts[ind],
groups, ...)
if(plotTD){
for(z in 1:length(pdos)){
panel.lines(c(0, pdos[z]), c(yax[z], yax[z]),lty=2, col=2)
panel.lines(c(pdos[z], pdos[z]), c(0, yax[z]),lty=2, col=2)
}
}}, key = key, ...)
} else {
respdata <- data.frame(response = c(resp),
dose = rep(doseSeq, ncol(resp)), model = modelfact)
panDat <- list(placEff = placEff, maxEff = maxEff, doses = doses, pdos=pdos)
ltplot <- xyplot(response ~ dose | model, data = respdata,
panel.data = panDat, xlab = xlab, ylab = ylab,
panel = function(x, y, ..., panel.data){
panel.grid(h=-1, v=-1, col = "lightgrey", lty=2)
z <- panel.number()
panel.abline(h = c(panel.data$placEff[z],
panel.data$placEff[z] +
panel.data$maxEff[z]), lty = 2)
panel.xyplot(x, y, type = "l", ...)
ind <- match(panel.data$doses, x)
panel.xyplot(x[ind], y[ind], ...)
if(plotTD){
if(direction == "increasing"){
delt <- Delta
base <- panel.data$placEff[z]
delt <- panel.data$placEff[z]+Delta
} else {
delt <- -Delta
base <- panel.data$placEff[z]+panel.data$maxEff[z]
delt <- panel.data$placEff[z]-Delta
}
panel.lines(c(0, pdos[z]), c(delt, delt), lty=2, col=2)
panel.lines(c(pdos[z], pdos[z]), c(base, delt),lty=2, col=2)
}
}, strip = function(...) strip.default(..., style = 1),
as.table = TRUE,...)
}
print(ltplot)
}
## calculate target dose
calcTD <- function(model, pars, Delta, TDtype = c("continuous", "discrete"),
direction = c("increasing", "decreasing"),
doses, off, scal, nodes){
## calculate the smallest dose x for which
## f(x) > f(0) + Delta (increasing) or f(x) < f(0) - Delta (decreasing)
## => f0(x) > Delta (increasing) or f0(x) < - Delta (decreasing) (f0 effect-curve)
## need to multiply f0(x) (=slope parameter) with -1 then decreasing case
## can be covered equivalent to increasing case
TDtype <- match.arg(TDtype)
direction <- match.arg(direction)
if(direction == "decreasing"){ ## transform problem to "increasing" case
if(model == "linInt"){
pars <- -pars
} else {
pars[2] <- -pars[2]
if(model == "quadratic") ## also need to negate pars[3]
pars[3] <- -pars[3]
}
}
if(model == "betaMod" & missing(scal))
stop("Need \"scal\" parameter for betaMod model")
if(model == "linlog" & missing(off))
stop("Need \"off\" parameter for linlog model")
if(model == "linInt"){
if(missing(nodes))
stop("Need \"nodes\" parameter for linlog model")
if(length(nodes) != length(pars))
stop("nodes and pars of incompatible length")
}
if(TDtype == "continuous"){ ## calculate target dose analytically
cf <- pars
if(model == "linear"){
td <- Delta/cf[2]
if(td > 0)
return(td)
return(NA)
}
if(model == "linlog"){
td <- off*exp(Delta/cf[2])-off
if(td > 0)
return(td)
return(NA)
}
if(model == "quadratic"){
if(4*cf[3]*Delta+cf[2]^2 < 0)
return(NA)
d1 <- -(sqrt(4*cf[3]*Delta+cf[2]^2)+cf[2])/(2*cf[3])
d2 <- (sqrt(4*cf[3]*Delta+cf[2]^2)-cf[2])/(2*cf[3])
ind <- c(d1, d2) > 0
if(!any(ind))
return(NA)
return(min(c(d1, d2)[ind]))
}
if(model == "emax"){
if(Delta > cf[2])
return(NA)
return(Delta*cf[3]/(cf[2]-Delta))
}
if(model == "logistic"){
if(Delta > cf[2] * (1 - logistic(0, 0, 1, cf[3], cf[4])))
return(NA)
.tmp1 <- exp(cf[3]/cf[4])
num <- .tmp1*cf[2]-Delta*.tmp1-Delta
den <- cf[2]+Delta*.tmp1+Delta
return(cf[3]-cf[4]*log(num/den))
}
if(model == "sigEmax"){
if(Delta > cf[2])
return(NA)
return((Delta*cf[3]^cf[4]/(cf[2]-Delta))^(1/cf[4]))
}
if(model == "betaMod"){
if(Delta > cf[2])
return(NA)
func <- function(x, Emax, delta1, delta2, scal, Delta){
betaMod(x, 0, 1, delta1, delta2, scal)-Delta/Emax
}
mode <- cf[3]/(cf[3]+cf[4])*scal
out <- uniroot(func, lower=0, upper=mode, delta1=cf[3],
delta2=cf[4], Emax=cf[2], scal=scal,
Delta=Delta)$root
return(out)
}
if(model == "exponential"){
if(Delta/cf[2] < 0) ## wrong direction
return(NA)
return(cf[3]*log(Delta/cf[2]+1))
}
if(model == "linInt"){
inds <- cf < cf[1] + Delta
if(all(inds))
return(NA)
ind <- min((1:length(cf))[!inds])-1
tmp <- (cf[1]+Delta-cf[ind])/(cf[ind+1]-cf[ind])
td <- nodes[ind] + tmp*(nodes[ind+1]-nodes[ind])
if(td > 0)
return(td)
else
return(NA)
}
}
if(TDtype == "discrete"){
if(missing(doses))
stop("For TDtype = \"discrete\" need the possible doses in doses argument")
if(!any(doses == 0))
stop("need placebo dose for TD calculation")
if(model == "betaMod")
pars <- c(pars, scal)
if(model == "linlog")
pars <- c(pars, off)
doses <- sort(doses)
if(model != "linInt"){
resp <- do.call(model, c(list(doses), as.list(pars)))
} else {
resp <- do.call(model, c(list(doses), as.list(list(pars, nodes))))
}
ind <- resp >= resp[1] + Delta
if(any(ind)){ ## TD does exist return smallest dose fulfilling threshold
return(min(doses[ind]))
} else {
return(NA)
}
}
}
TD <- function(object, Delta, TDtype = c("continuous", "discrete"),
direction = c("increasing", "decreasing"), doses){
## calculate target doses for Mods or DRMod object, return in a numeric
if(missing(Delta))
stop("need \"Delta\" to calculate TD")
if(Delta <= 0)
stop("\"Delta\" needs to be > 0")
modNams <- tds <- NULL
if(inherits(object, "Mods")){
off <- attr(object, "off")
scal <- attr(object, "scal")
nodes <- attr(object, "doses")
## loop through list
for(nam in names(object)){
par <- object[[nam]]
if(is.matrix(par)){
for(i in 1:nrow(par)){
td <- calcTD(nam, par[i,], Delta, TDtype, direction, doses, off, scal, nodes)
modNams <- c(modNams, paste(nam, i, sep=""))
tds <- c(tds, td)
}
} else { # single model
td <- calcTD(nam, par, Delta, TDtype, direction, doses, off, scal, nodes)
modNams <- c(modNams, nam)
tds <- c(tds, td)
}
}
names(tds) <- modNams
return(tds)
}
if(inherits(object, "DRMod")){ # if fmodel is a DRMod object
nam <- attr(object, "model")
par <- sepCoef(object)$DRpars
scal <- attr(object, "scal")
off <- attr(object, "off")
nodes <- attr(object, "nodes")
if(attr(object, "placAdj")){
par <- c(0, par)
if(nam == "linInt")
nodes <- c(0, nodes)
}
td <- calcTD(nam, par, Delta, TDtype, direction, doses, off, scal, nodes)
names(td) <- NULL
return(td)
}
if(inherits(object, "bFitMod")){ # if fmodel is a bFitMod object
nam <- attr(object, "model")
scal <- attr(object, "scal")
off <- attr(object, "off")
nodes <- attr(object, "nodes")
if(attr(object, "placAdj")){
if(nam == "linInt")
nodes <- c(0, nodes)
}
td <- apply(object$samples, 1, function(x){
if(attr(object, "placAdj")){
par <- c(0, x)
} else {
par <- x
}
calcTD(nam, par, Delta, TDtype, direction, doses, off, scal, nodes)
})
return(td)
}
}
## calculate gradient of target dose
calcTDgrad <- function(model, pars, Delta,
direction = c("increasing", "decreasing"), off, scal, nodes){
direction <- match.arg(direction)
if(direction == "decreasing"){ ## transform problem to "increasing" case
Delta <- -Delta ## TD is smallest x so that:
} ## f(x) = f(0) + Delta (incr), f(x) = f(0) - Delta (decr)
cf <- pars
if(model == "linear")
return(c(0, -Delta/cf[2]^2))
if(model == "linlog"){
## version assuming off unknown
##c(0, -Delta*off*exp(Delta/cf[2])/cf[2]^2, exp(Delta/cf[2])-1)
return(c(0, -Delta*off*exp(Delta/cf[2])/cf[2]^2))
}
if(model == "quadratic"){
squrt <- sqrt(4*Delta*cf[3]+cf[2]^2)
.p1 <- -(squrt-cf[2])/(2*cf[3]*squrt)
.p2 <- cf[2]*squrt-2*Delta*cf[3]-cf[2]^2
.p2 <- .p2/(2*cf[3]^2*squrt)
return(c(0, .p1, .p2))
}
if(model == "emax"){
.p1 <- -Delta*cf[3]/(cf[2]-Delta)^2
.p2 <- -Delta/((Delta/cf[2]-1)*cf[2])
return(c(0, .p1, .p2))
}
if(model == "logistic"){
et2t3 <- exp(cf[3]/cf[4])
t1 <- (1/(1+et2t3)+Delta/cf[2])
t2 <- (1/t1-1)
.p1 <- -Delta*cf[4]/(cf[2]^2*t1^2*t2)
.p2 <- 1-et2t3/((et2t3+1)^2*t1^2*t2)
.p3 <- cf[3]*et2t3/(cf[4]*(et2t3+1)^2*t1^2*t2)-log(t2)
return(c(0, .p1, .p2, .p3))
}
if(model == "sigEmax"){
brack <- (-Delta*cf[3]^cf[4]/(Delta-cf[2]))^(1/cf[4])
.p1 <- brack/((Delta-cf[2])*cf[4])
.p2 <- brack/cf[3]
.p3 <- brack*(log(cf[3])/cf[4]-log((-Delta*cf[3]^cf[4])/(Delta-cf[2]))/cf[4]^2)
return(c(0, .p1, .p2, .p3))
}
if(model == "betaMod"){
h0 <- function(cf, scal, Delta){
func <- function(x, delta1, delta2, Emax, scal, Delta){
betaMod(x, 0, 1, delta1, delta2, scal)-Delta/Emax
}
mode <- cf[3]/(cf[3]+cf[4])*scal
uniroot(func, lower=0, upper=mode, delta1=cf[3], delta2=cf[4],
Emax=cf[2], scal=scal, Delta=Delta)$root
}
td <- h0(cf, scal, Delta) ## calculate target dose
.p1 <- -td*(scal-td)/(cf[2]*(cf[3]*(scal-td)-cf[4]*td))
.p2 <- .p1*cf[2]*(log(td/scal)+log(cf[3]+cf[4])-log(cf[3]))
.p3 <- .p1*cf[2]*(log(1-td/scal)+log(cf[3]+cf[4])-log(cf[4]))
return(c(0, .p1, .p2, .p3))
}
if(model == "exponential"){
.p1 <- -Delta*cf[3]/(cf[2]*Delta+cf[2]^2)
.p2 <- log(Delta/cf[2] + 1)
return(c(0, .p1, .p2))
}
if(model == "linInt"){
stop("linInt model not implemented")
## ## the below should be correct
## out <- numeric(length(cf))
## indx <- 1:max(which(cf==max(cf)))
## ind <- max(indx[cf[indx] < cf[1] + Delta])
## out[1] <- 1/(cf[ind+1]-cf[ind])
## out[ind] <- -1/(cf[ind+1]-cf[ind])
## out[ind+1] <- -(cf[1]+Delta-cf[ind])/(cf[ind+1]-cf[ind])^2
## return(out*(nodes[ind+1]-nodes[ind]))
}
}
calcED <- function(model, pars, p, maxD, EDtype = c("continuous", "discrete"),
doses, off, scal, nodes){
## calculate the smallest dose x for which
## f(x) > f(0) + p*(f(xmax)-f(0))
## e.g. the EDp within the observed dose-range
EDtype <- match.arg(EDtype)
if(model == "betaMod" & missing(scal))
stop("Need \"scal\" parameter for betaMod model")
if(model == "linlog" & missing(off))
stop("Need \"off\" parameter for linlog model")
if(model == "linInt"){
if(missing(nodes))
stop("Need \"nodes\" parameter for linlog model")
if(length(nodes) != length(pars))
stop("nodes and pars of incompatible length")
}
if(EDtype == "continuous"){ ## calculate target dose analytically
cf <- pars
if(cf[2] == 0){
return(NA)
}
if(model == "linear"){
return(p*maxD)
}
if(model == "linlog"){
return(off*(exp(p*(log(maxD+off)-log(off)))-1))
}
if(model == "exponential"){
return(cf[3]*log(p*exp(maxD/cf[3])-p+1))
}
if(model == "emax"){
return(p*cf[3]*maxD/((1-p)*maxD+cf[3]))
}
if(model == "logistic"){
res1 <- ((p-1)*exp(maxD/cf[4]+cf[3]/cf[4])-exp(2*cf[3]/cf[4])-p*exp(cf[3]/cf[4]))
res2 <- ((p*exp(cf[3]/cf[4])+1)*exp(maxD/cf[4])+(1-p)*exp(cf[3]/cf[4]))
return(cf[3]-cf[4]*log(-res1/res2))
}
if(model == "sigEmax"){
out <- p*cf[3]^cf[4]*maxD^cf[4]/((1-p)*maxD^cf[4]+cf[3]^cf[4])
return(out^(1/cf[4]))
}
if(model == "quadratic"){
mode <- -pars[2]/(2*pars[3])
if(mode > maxD | mode < 0) ## maximum outside dose range
mode <- maxD
const <- pars[2]*mode+pars[3]*mode^2
d1 <- -(sqrt(4*pars[3]*const*p+pars[2]^2)+pars[2])/pars[3]/2.0
d2 <- (sqrt(4*pars[3]*const*p+pars[2]^2)-pars[2])/pars[3]/2.0
ind <- c(d1, d2) > 0
if(!any(ind))
return(NA)
return(min(c(d1, d2)[ind]))
}
if(model == "betaMod"){
func <- function(x, Emax, delta1, delta2, scal, p, mode){
p - betaMod(x, 0, 1, delta1, delta2, scal)/betaMod(mode, 0, 1, delta1, delta2, scal)
}
mode <- cf[3]/(cf[3]+cf[4])*scal
out <- uniroot(func, lower=0, upper=mode, delta1=cf[3],
delta2=cf[4], Emax=cf[2], scal=scal,
p=p, mode = mode)$root
return(out)
}
if(model == "linInt"){
dif <- cf-cf[1]
ind <- which.max(abs(dif))
maxEff <- abs(dif)[ind]
if(dif[ind] > 0){
direc <- "increasing"
} else {
direc <- "decreasing"
}
out <- calcTD("linInt", cf, Delta=p*maxEff, TDtype="continuous",
direction = direc, off=off, scal=scal, nodes=nodes)
return(out)
}
}
if(EDtype == "discrete"){
## use calcTD function
if(missing(doses))
stop("For EDtype = \"discrete\" need the possible doses in doses argument")
if(!any(doses == 0))
stop("need placebo dose for ED calculation")
doses <- sort(doses)
if(model != "linInt"){
if(model == "betaMod")
pars <- c(pars, scal)
if(model == "linlog")
pars <- c(pars, off)
resp0 <- do.call(model, c(list(0), as.list(pars)))
resp <- abs(do.call(model, c(list(doses), as.list(pars)))-resp0)
} else {
resp0 <- do.call(model, c(list(0), as.list(list(pars, nodes))))
resp <- abs(do.call(model, c(list(doses), as.list(list(pars, nodes))))-resp0)
}
## calculate maximum response
if(model %in% c("betaMod", "quadratic")){
func2 <- function(x){
resp0 <- do.call(model, c(list(0), as.list(pars)))
abs(do.call(model, c(list(x), as.list(pars)))-resp0)
}
opt <- optimize(func2, range(doses), maximum=TRUE)
maxResp <- opt$objective
} else {
maxResp <- max(resp)
}
}
ind <- resp >= p*maxResp
if(any(ind)){ ## TD does exist return smallest dose fulfilling threshold
return(min(doses[ind]))
} else {
return(NA)
}
}
ED <- function(object, p, EDtype = c("continuous", "discrete"), doses){
## calculate target doses for Mods or DRMod object, return in a numeric
if(missing(p))
stop("need \"p\" to calculate ED")
if(p <= 0 | p >= 1)
stop("\"p\" needs to be in (0,1)")
modNams <- eds <- NULL
if(inherits(object, "Mods")){
off <- attr(object, "off")
scal <- attr(object, "scal")
nodes <- attr(object, "doses")
maxD <- max(attr(object, "doses"))
## loop through list
for(nam in names(object)){
par <- object[[nam]]
if(is.matrix(par)){
for(i in 1:nrow(par)){
ed <- calcED(nam, par[i,], p, maxD, EDtype, doses, off, scal, nodes)
modNams <- c(modNams, paste(nam, i, sep=""))
eds <- c(eds, ed)
}
} else { # single model
ed <- calcED(nam, par, p, maxD, EDtype, doses, off, scal, nodes)
modNams <- c(modNams, nam)
eds <- c(eds, ed)
}
}
names(eds) <- modNams
return(eds)
}
if(inherits(object, "DRMod")){ # if fmodel is a DRMod object
nam <- attr(object, "model")
par <- sepCoef(object)$DRpars
doseNam <- attr(object, "doseRespNam")[1]
maxD <- max(attr(object,"data")[[doseNam]])
scal <- attr(object, "scal")
off <- attr(object, "off")
nodes <- attr(object, "nodes")
if(attr(object, "placAdj")){
par <- c(0, par)
if(nam == "linInt")
nodes <- c(0, nodes)
}
ed <- calcED(nam, par, p, maxD, EDtype, doses, off, scal, nodes)
names(ed) <- NULL
return(ed)
}
if(inherits(object, "bFitMod")){ # if fmodel is a bFitMod object
nam <- attr(object, "model")
scal <- attr(object, "scal")
off <- attr(object, "off")
nodes <- attr(object, "nodes")
if(attr(object, "placAdj")){
if(nam == "linInt")
nodes <- c(0, nodes)
}
doseNam <- attr(object, "doseRespNam")[1]
maxD <- max(attr(object,"data")[[doseNam]])
ed <- apply(object$samples, 1, function(x){
if(attr(object, "placAdj")){
par <- c(0, x)
} else {
par <- x
}
calcED(nam, par, p, maxD, EDtype, doses, off, scal, nodes)
})
return(ed)
}
}
calcEDgrad <- function(model, pars, maxD, p, off, scal, nodes){
cf <- pars
if(model == "linear")
return(c(0,0))
if(model == "linlog"){
return(c(0,0))
}
if(model == "emax"){
p <- (1-p)*p*maxD^2/(p*maxD-maxD-cf[3])^2
return(c(0, 0, p))
}
if(model == "exponential"){
p <- log(p*exp(maxD/cf[3])-p+1)-p*maxD*exp(maxD/cf[3])/(cf[3]*(p*exp(maxD/cf[3])-p+1))
return(c(0, 0, p))
}
## for other models calculate gradient numerically (formulas more complicated)
if(model == "linInt"){
stop("linInt model not implemented")
}
avail <- requireNamespace("numDeriv", quietly = TRUE)
if(!avail)
stop("Need suggested package numDeriv for this calculation")
func0 <- function(pars, model, p, maxD, off, scal){
calcED(model, pars, p, maxD, EDtype = "continuous", off=off, scal=scal)
}
scal0 <- off0 <- NULL
if(model == "betaMod")
scal0 <- scal
if(model == "linlog")
off0 <- off
numDeriv::grad(func0, pars, model=model, p=p, maxD=maxD, off=off, scal=scal)
}
calcResp <- function(models, doses, off, scal, nodes){
## generate response vectors for models and guesstimates in "models"
## models - candidate model list of class Mods
nModels <- length(models) # number of model elements
parList <- val <- vector("list", modCount(models, fullMod = TRUE))
k <- 1
nams <- character()
for(nm in names(models)) {
pars <- models[[nm]]
if (!is.null(pars) && !is.numeric(pars)) {
stop("elements of \"models\" must be NULL or numeric")
}
if (is.matrix(pars)) { # multiple models
nmod <- nrow(pars) # number of models
if(nm == "linlog")
pars <- cbind(pars, off)
if(nm == "betaMod")
pars <- cbind(pars, scal)
ind <- 1:nmod
nams <- c(nams, paste(nm, ind, sep = ""))
for(j in 1:nmod) {
if(nm != "linInt"){
val[[k]] <- do.call(nm, c(list(doses), as.list(pars[j,])))
} else {
val[[k]] <- linInt(doses, pars[j,], nodes)
}
parList[[k]] <- pars[j,]
k <- k + 1
}
} else { # single model
if(nm == "linlog")
pars <- c(pars, off)
if(nm == "betaMod")
pars <- c(pars, scal)
nams <- c(nams, nm)
if(nm != "linInt"){
val[[k]] <- do.call(nm, c(list(doses), as.list(pars)))
} else {
val[[k]] <- linInt(doses, pars, nodes)
}
parList[[k]] <- pars
k <- k + 1
}
}
muMat <- do.call("cbind", val)
dimnames(muMat) <- list(doses, nams)
names(parList) <- nams
attr(muMat, "parList") <- parList
muMat
}
getResp <- function(fmodels, doses){
## convenience function for getting the mean responses of
## the models in a Mods object (output in matrix)
if(!inherits(fmodels, "Mods"))
stop("\"fmodels\" needs to be of class Mods")
if(missing(doses))
doses <- attr(fmodels, "doses")
off <- attr(fmodels, "off")
scal <- attr(fmodels, "scal")
nodes <- attr(fmodels, "doses")
calcResp(fmodels, doses, off=off, scal=scal, nodes=nodes)
}
## calculates the location and scale parameters corresponding to
## given placEff, maxEff, and guesstimates
getLinPars <- function(model, doses, guesstim, placEff, maxEff, off, scal){
if(model == "linear"){
e1 <- maxEff/max(doses)
return(c(e0=placEff, delta=e1))
}
if(model == "linlog"){
e1 <- maxEff/(log(max(doses) + off) - log(off))
return(c(e0=(placEff-e1*log(off)), delta=e1))
}
if(model == "quadratic"){
dMax <- 1/(-2*guesstim)
b1 <- maxEff/(dMax + guesstim*dMax^2)
b2 <- guesstim * b1
return(c(e0=placEff, b1=b1, b2=b2))
}
if(model == "emax"){
emax.p <- maxEff * (guesstim + max(doses))/max(doses)
return(c(e0=placEff, eMax=emax.p, ed50=guesstim))
}
if(model == "exponential"){
e1 <- maxEff/(exp(max(doses)/guesstim) - 1)
e0 <- placEff
return(c(e0=e0, e1=e1, delta=guesstim))
}
if(model == "logistic"){
emax.p <- maxEff/
(logistic(max(doses),0,1, guesstim[1], guesstim[2]) -
logistic(0, 0, 1, guesstim[1], guesstim[2]))
e0 <- placEff-emax.p*logistic(0,0,1,guesstim[1], guesstim[2])
return(c(e0=e0, eMax=emax.p, ed50=guesstim[1], delta=guesstim[2]))
}
if(model == "betaMod"){
return(c(e0=placEff, eMax=maxEff, delta1=guesstim[1], delta2=guesstim[2]))
}
if(model == "sigEmax"){
ed50 <- guesstim[1]
h <- guesstim[2]
dmax <- max(doses)
eMax <- maxEff*(ed50^h+dmax^h)/dmax^h
return(c(e0 = placEff, eMax = eMax, ed50 = ed50, h = h))
}
if(model == "linInt"){
ind <- which.max(abs(guesstim))
return(c(placEff, placEff+maxEff*guesstim/guesstim[ind]))
}
}
|