1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
## Bayesian and bootstrap fitting of dose-response models
checkPrior <- function(prior){
z <- 1
for(z in 1:length(prior)){
prvec <- prior[[z]]
nam <- names(prior)[z]
if(!all(is.numeric(prvec)))
stop("non-numeric entry in prior")
if(nam %in% c("norm", "t", "lnorm")){
if(nam == "t"){
if(length(prvec) != 3)
stop("need vector of length 3 for ", nam, " prior")
if(prvec[2] <= 0|prvec[3] <= 0)
stop("2nd and 3rd entry needs to be positive for ", nam, " prior")
} else {
if(length(prvec) != 2)
stop("need vector of length 2 for ", nam, " prior")
if(prvec[2] <= 0)
stop("2nd entry needs to be positive for ", nam, " prior")
}
} else {
if(length(prvec) != 4)
stop("need vector of length 4 for beta prior")
if(min(prvec[3:4]) <= 0)
stop("entry 3 and 4 need to be positive for beta prior")
if(prvec[1] >= prvec[2])
stop("entry 1 needs to be smaller than entry 2 for beta prior")
}
}
}
getPrBnds <- function(prior){
prbnds <- matrix(ncol = 2, nrow = length(prior))
for(z in 1:length(prior)){
prvec <- prior[[z]]
nam <- names(prior)[z]
if(nam %in% c("norm", "t"))
prbnds[z,] <- c(-Inf, Inf)
if(nam == "lnorm")
prbnds[z,] <- c(0, Inf)
if(nam == "beta")
prbnds[z,] <- c(prvec[1], prvec[2])
}
prbnds
}
projPrBnds <- function(par, lbnd, ubnd){
## project start parameter into bounds
if(par > lbnd & par < ubnd){
return(par)
} else {
rng <- ubnd-lbnd
if(!is.finite(rng))
rng <- 5
if(par <= lbnd)
return(lbnd+0.05*rng)
if(par >= ubnd)
return(ubnd-0.05*rng)
}
}
bFitMod <- function(dose, resp, model, S, placAdj = FALSE,
type = c("Bayes", "bootstrap"),
start = NULL, prior = NULL, nSim = 1000,
MCMCcontrol = list(), control = NULL, bnds,
addArgs = NULL){
if(placAdj & model %in% c("linlog", "logistic"))
stop("logistic and linlog models can only be fitted with placAdj")
nD <- length(dose)
if (length(resp) != nD)
stop("dose and resp need to be of the same size")
dose <- as.numeric(dose)
if (any(dose < -.Machine$double.eps))
stop("dose values need to be non-negative")
if (!is.numeric(dose))
stop("dose variable needs to be numeric")
resp <- as.numeric(resp)
## order dose and resp increasingly
ord <- order(dose)
dose <- dose[ord]
resp <- resp[ord]
if (nrow(S) != nD | ncol(S) != nD)
stop("S and dose have non-confirming size")
if (missing(model))
stop("need to specify the model that should be fitted")
scal <- off <- nodes <- NULL
if(model %in% c("linlog", "betaMod")){
lst <- getAddArgs(addArgs, dose)
if(model == "betaMod")
scal <- lst$scal
if(model == "linlog")
off <- lst$off
}
if(model == "linInt")
nodes <- dose
## model number
builtIn <- c("linear", "linlog", "quadratic", "linInt", "emax",
"logistic", "exponential", "sigEmax", "betaMod")
modNr <- match(model, builtIn)
if(is.na(modNr))
stop("invalid model selected")
## number of parameters
nPar <- as.integer(c(2, 2, 3, length(dose), 3, 4, 3, 4, 4)[modNr])
type <- match.arg(type)
if(type == "Bayes"){
res <- bFitMod.Bayes(dose, resp, S, model, placAdj,
start, prior, nSim, MCMCcontrol,
off, scal, nPar, modNr)
res <- matrix(res, nrow = nSim, ncol = nPar)
if(placAdj & model != "linInt")
res <- res[,-1, drop = FALSE]
} else { ## bootstrap
res <- bFitMod.bootstrap(dose, resp, S, model, placAdj,
nSim, control, bnds, off, scal,
nodes)
}
out <- list(samples = res)
if(model != "linInt"){
nams <- names(formals(model))[-1]
} else {
nams <- paste("d", dose, sep="")
}
if(modNr %in% c(2,9))
nams <- nams[-length(nams)]
if(placAdj & model != "linInt")
nams <- nams[-1]
colnames(out$samples) <- nams
attr(out, "model") <- model
lst <- list(dose, resp, S)
doseNam <- as.list(match.call())$dose
respNam <- as.list(match.call())$resp
attr(out, "doseRespNam") <- as.character(c(doseNam, respNam))
names(lst) <- c(doseNam, respNam, "S")
attr(out, "data") <- lst
attr(out, "type") <- type
attr(out, "call") <- match.call()
attr(out, "placAdj") <- placAdj
attr(out, "prior") <- prior
attr(out, "scal") <- scal
attr(out, "off") <- off
attr(out, "nodes") <- nodes
class(out) <- "bFitMod"
out
}
bFitMod.Bayes <- function(dose, resp, S, model, placAdj,
start, prior, nSim, MCMCcontrol,
off, scal, nPar, modNr){
## get defaults for MCMCcontrol
ctrl <- list(thin = 1, w = NULL, adapt=TRUE)
if (!is.null(MCMCcontrol)) {
MCMCcontrol <- as.list(MCMCcontrol)
ctrl[names(MCMCcontrol)] <- MCMCcontrol
}
## check prior distribution
if(is.null(prior))
stop("need specification of prior in prior argument")
prnr <- match(names(prior), c("norm", "t", "lnorm", "beta"))
if(any(is.na(prnr)))
stop("invalid prior selected")
np <- nPar
if(placAdj){
if(model != "linInt"){
np <- nPar - 1
} else {
placAdj <- FALSE ## can proceed as if placAdj = FALSE
}
}
if(length(prnr) != np)
stop(length(prnr), " priors specified, need ", np," for selected model")
checkPrior(prior)
prBnds <- getPrBnds(prior)
## add some checks here (scale > 0, a > b, alpha,beta>0)
prior <- as.double(do.call("c", prior))
## calculate starting value using fitMod if needed
## and width parameter for slice sampler
if(is.null(start)|is.null(ctrl$w)){
mD <- max(dose)
ll <- list(emax = c(0.1, 1.5) * mD, exponential = c(0.5, 1.5) * mD,
logistic = matrix(c(0.1, 0.05, 1.5, 1/2) * mD, 2),
sigEmax = matrix(c(0.1 * mD, 0.5, 1.5 * mD, 5), 2),
betaMod = matrix(c(0.2, 0.2, 4, 4), 2))
gfit <- fitMod(dose, resp, S=S, model=model, type = "general",
bnds = ll[[model]],
placAdj = placAdj, addArgs=list(off = off, scal = scal))
if(is.null(start)){
start <- coef(gfit)
for(i in 1:length(start)){
start[i] <- projPrBnds(start[i], prBnds[i,1], prBnds[i,2])
}
} else {
for(i in 1:length(start)){
if((start[i] < prBnds[i,1]) | (start[i] > prBnds[i,2]))
stop("specified start value not consistent with bounds on prior distribution")
}
}
if(is.null(ctrl$w))
ctrl$w <- rep(1.0, nPar)#sqrt(diag(vcov(gfit)))
}
if(np != length(start))
stop("start of wrong length")
if(placAdj){ # append 0
if(model != "linInt")
start <- c(0.0, start)
}
if(length(ctrl$w) != length(start))
stop("w and start need to be of same size")
## add information for beta and linlog model
if(model == "betaMod"){
if(is.null(scal))
stop("need scal parameter for betaMod")
start <- c(start, as.double(scal))
}
if(model == "linlog"){
if(is.null(off))
stop("need off parameter for betaMod")
start <- c(start, as.double(off))
}
## preliminary formatting to send information to C
start <- as.double(start)
inS <- solve(S)
if(inherits(inS, "try-error"))
stop("specified S is not invertible")
clinS <- as.double(chol(inS))
## ensure that parameters are of right class
nSimTot <- as.integer(nSim*ctrl$thin);thin <- as.integer(ctrl$thin)
out <- double(floor(nSimTot/thin)*nPar)
resp <- as.double(resp);dose <- as.double(dose)
modNr <- as.integer(modNr);clinS <- as.double(clinS)
nD <- as.integer(length(dose));w <- as.double(ctrl$w)
noint <- as.integer(placAdj)
## call c code
if(ctrl$adapt){
res <- .C("sample", as.integer(500), as.integer(1), out=double(500*nPar),
start, noint, w, dose, modNr, nPar, double(length(dose)),
resp, clinS, nD, prior, prnr, double(nPar), double(nPar))
res <- matrix(res$out, nrow = 500, ncol = nPar)
w <- apply(res, 2, function(x) IQR(x)/1.3)
}
res <- .C("sample", nSimTot, thin, out=out, start, noint, w,
dose, modNr, nPar, double(length(dose)), resp, clinS,
nD, prior, prnr, double(nPar), double(nPar))
res$out
}
bFitMod.bootstrap <- function(dose, resp, S, model, placAdj,
nSim, control, bnds, off, scal,
nodes){
if(model %in% c("emax", "exponential", "betaMod", "logistic", "sigEmax")){
if(missing(bnds)){
message("Message: Need bounds in \"bnds\" for nonlinear models, using default bounds from \"defBnds\".")
bnds <- defBnds(max(dose))[[model]]
}
}
## same arguments as in gFitDRModel function
sims <- rmvnorm(nSim, resp, S)
func <- function(x){
fit <- fitMod.raw(dose, x, S=S, model=model, type="general",
placAdj=placAdj, bnds=bnds, control=control,
off=off, scal=scal, nodes=nodes,
covarsUsed = FALSE, df = Inf,
doseNam = "dose", respNam = "resp")
coef(fit)
}
out <- apply(sims, 1, func)
if(is.matrix(out)){
return(t(out))
} else {
return(matrix(out, nrow = nSim, ncol = 1))
}
}
## to do write print, predict and summary method
ess.mcmc <- function(series, lag.max = NULL){
## initial monotone sequence estimate of effective sample size
## Geyer, 1992, Statistical Science, idea:
## sum of even and un-even autocorrelations (gamma)
## needs to be positive and monotone decreasing
N <- length(series)
if (length(unique(series)) == 1)
return(NA)
if (is.null(lag.max))
lag.max <- 10 * log10(N)
ac <- acf(series, plot = FALSE, lag.max = lag.max)$acf[2:(lag.max +
1), , 1]
gam <- ac[-length(ac)]+ac[-1]
dgam <- -diff(gam)
if (gam[1] < 0)
return(N)
m1 <- m2 <- lag.max
ind1 <- gam < 0
if (any(ind1))
m1 <- min(which(ind1))
ind2 <- dgam < 0
if (any(ind2))
m2 <- min(which(ind2))
ind <- min(2 * min(m1, m2) + 1, lag.max)
N/(1 + 2 * sum(ac[1:ind]))
}
print.bFitMod <- function(x, digits = 3, ...){
## print brief summary of MCMC samples
doseNam <- attr(x, "doseRespNam")[1]
respNam <- attr(x, "doseRespNam")[2]
resp <- attr(x, "data")[[respNam]]
names(resp) <- attr(x, "data")[[doseNam]]
cat("Dose Response Model\n\n")
cat(paste("Model:", attr(x, "model")), "\n\n")
if(attr(x, "type") == "Bayes"){
cat("Summary of posterior draws\n")
func <- function(x){
c(mean=mean(x), sdev=sd(x),
quantile(x, c(0.025, 0.25, 0.5, 0.75, 0.975)),
n.eff=ess.mcmc(x))
}
print(t(apply(x$samples, 2, func)), digits=digits)
} else {
cat("Summary of bootstrap draws\n")
func <- function(x){
c(mean=mean(x), sdev=sd(x),
quantile(x, c(0.025, 0.25, 0.5, 0.75, 0.975)))
}
print(t(apply(x$samples, 2, func)), digits=digits)
}
cat("\nFitted to:\n")
print(signif(resp, digits+2))
}
predict.bFitMod <- function(object, predType = c("full-model", "effect-curve"),
summaryFct = function(x) quantile(x, probs = c(0.025, 0.25, 0.5, 0.75, 0.975)),
doseSeq = NULL, lenSeq = 101, ...){
predType <- match.arg(predType)
doseNam <- attr(object, "doseRespNam")[1]
if (is.null(doseSeq)) {
doseSeq <- seq(0, max(attr(object, "data")[[doseNam]]), length = lenSeq)
}
model <- attr(object, "model")
scal <- attr(object, "scal")
off <- attr(object, "off")
placAdj <- attr(object, "placAdj")
if(placAdj){
nodes <- c(0,attr(object, "data")[[doseNam]])
} else {
nodes <- attr(object, "data")[[doseNam]]
}
out <- predSamples(samples = object$samples, doseSeq = doseSeq,
placAdj = placAdj, model = model, scal = scal,
off = off, nodes = nodes)
if(predType == "effect-curve"){
out <- out - out[,1]
}
if(!is.null(summaryFct)){
out0 <- apply(out, 2, summaryFct)
out <- matrix(out0, ncol = ncol(out))
}
colnames(out) <- doseSeq
out
}
predSamples <- function(samples, placAdjfullPars = FALSE, doseSeq, placAdj, model,
scal, off, nodes){
## placAdjfullPars argument only of interest if placAdj = TRUE
## it determines whether the e0 parameter is included as a row in the
## samples argument or not
if(model != "betaMod")
scal <- NULL
if(model != "linlog")
off <- NULL
if(placAdj){
if(placAdjfullPars){
if(model != "linInt"){
func <- function(x){
pred <- do.call(model, c(list(doseSeq), as.list(c(x, scal, off))))
pred0 <- do.call(model, c(list(0), as.list(c(x, scal, off))))
pred-pred0
}
} else {
func <- function(x){
pred <- do.call(model, c(list(doseSeq), as.list(list(x, nodes))))
pred0 <- do.call(model, c(list(0), as.list(list(x, nodes))))
pred-pred0
}
}
} else {
if(model != "linInt"){
func <- function(x)
do.call(model, c(list(doseSeq), as.list(c(c(0,x), scal, off))))
} else {
func <- function(x)
do.call(model, c(list(doseSeq), as.list(list(c(0,x), nodes))))
}
}
} else {
if(model != "linInt"){
func <- function(x)
do.call(model, c(list(doseSeq), as.list(c(x, scal, off))))
} else {
func <- function(x)
do.call(model, c(list(doseSeq), as.list(list(x, nodes))))
}
}
out <- t(apply(samples, 1, func))
}
plot.bFitMod <- function (x, plotType = c("dr-curve", "effect-curve"),
quant = c(0.025, 0.5, 0.975),
plotData = c("means", "meansCI", "none"),
level = 0.95, lenDose = 201, ...){
addArgs <- list(...)
plotType <- match.arg(plotType)
doseNam <- attr(x, "doseRespNam")[1]
respNam <- attr(x, "doseRespNam")[2]
dose <- attr(x, "data")[[doseNam]]
resp <- attr(x, "data")[[respNam]]
doseSeq <- seq(0, max(dose), length = lenDose)
plotData <- match.arg(plotData)
placAdj <- attr(x, "placAdj")
sumFct <- function(x){
quantile(x, probs = quant)
}
if (placAdj)
plotType <- "effect-curve"
if (plotType == "effect-curve") {
pred <- predict(x, predType = plotType, summaryFct = sumFct,
doseSeq = doseSeq)
main <- "Effect Curve"
if (placAdj) {
if (plotData == "meansCI") {
sdev <- sqrt(diag(attr(x, "data")$S))
q <- qnorm(1 - (1 - level)/2)
LBm <- UBm <- numeric(length(dose))
for (i in 1:length(dose)) {
LBm[i] <- resp[i] - q * sdev[i]
UBm[i] <- resp[i] + q * sdev[i]
}
}
else {
LBm <- UBm <- NULL
}
}
else {
LBm <- UBm <- NULL
}
}
if (plotType == "dr-curve") {
pred <- predict(x, predType = "full-model", summaryFct = sumFct,
doseSeq = doseSeq)
main <- "Dose-Response Curve\n"
if (plotData == "meansCI") {
sdev <- sqrt(diag(attr(x, "data")$S))
q <- qnorm(1 - (1 - level)/2)
LBm <- UBm <- numeric(length(dose))
for (i in 1:length(dose)) {
LBm[i] <- resp[i] - q * sdev[i]
UBm[i] <- resp[i] + q * sdev[i]
}
}
else {
LBm <- UBm <- NULL
}
}
rng <- range(c(pred, resp, LBm, UBm))
dff <- diff(rng)
ylim <- c(rng[1] - 0.02 * dff, rng[2] + 0.02 * dff)
callList <- list(doseSeq, t(pred), type = "l", xlab = doseNam,
ylim = ylim, ylab = respNam, main = main,
lty=1, col=1)
callList[names(addArgs)] <- addArgs
do.call("matplot", callList)
if (plotType == "dr-curve" | placAdj) {
if (plotData == "means")
points(dose, resp, pch = 19, cex = 0.75)
if (plotData == "meansCI") {
points(dose, resp, pch = 19, cex = 0.75)
for (i in 1:length(dose)) {
lines(c(dose[i], dose[i]), c(LBm[i], UBm[i]),
lty = 2)
}
}
}
res <- list(doseSeq = doseSeq)
attr(res, "level") <- level
attr(res, "ylim") <- ylim
res$mean <- pred
invisible(res)
}
coef.bFitMod <- function (object, ...){
object$samples
}
|