1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
|
## functions related to fitting dose-response models using ML or generalized approach
defBnds <- function(mD, emax = c(0.001, 1.5)*mD,
exponential = c(0.1, 2)*mD,
logistic = matrix(c(0.001, 0.01, 1.5, 1/2)*mD, 2),
sigEmax = matrix(c(0.001*mD, 0.5, 1.5*mD, 10), 2),
betaMod = matrix(c(0.05,0.05,4,4), 2)){
list(emax = emax, logistic = logistic, sigEmax = sigEmax,
exponential = exponential, betaMod = betaMod)
}
fit.control <- function(control){
## get control parameters for nonlinear fitting
## default parameters
res <- list(nlminbcontrol = list(),
optimizetol = .Machine$double.eps^0.5,
gridSize = list(dim1 = 30, dim2 = 144))
if(!is.null(control)){
## check arguments first
if(!is.null(control$nlminbcontrol)){
if(!is.list(control$nlminbcontrol))
stop("nlminbcontrol element of fitControl must be a list")
}
if(!is.null(control$gridSize)){
if(!is.list(control$gridSize))
stop("gridSize element of fitControl must be a list")
nams <- names(control$gridSize)
ind <- any(is.na(match(nams,c("dim1", "dim2"))))
if(ind){
stop("gridSize list needs to have names dim1 and dim2")
} else {
if(!is.numeric(control$gridSize$dim1) | !is.numeric(control$gridSize$dim1))
stop("gridSize$dim1 and gridSize$dim2 need to be numeric")
}
}
nams <- names(control)
res[nams] <- control
if(!all(nams %in% c("nlminbcontrol","optimizetol","gridSize")))
warning("control needs to have entries called \"nlminbcontrol\",\"optimizetol\",\"gridSize\"")
res[nams] <- control
}
res
}
getGrid <- function(Ngrd, bnds, dim){
if(dim == 1){
grdnods <- (2*(1:Ngrd)-1)/(2*Ngrd)
mat <- matrix(grdnods*(bnds[2]-bnds[1])+bnds[1], ncol = 1)
} else { # use generalized lattice point set (glp) set (maximum size 75025)
glp <- c(3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,
610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025)
if(Ngrd > 75025)
Ngrd <- 75025
if(Ngrd < 5)
Ngrd <- 5
ind <- min((1:22)[glp >= Ngrd])
N <- glp[ind]
k <- 1:N
mat <- cbind((k-0.5)/N, ((glp[ind-1]*k-0.5)/N)%%1)
mat[,1] <- mat[,1]*(bnds[1,2]-bnds[1,1])+bnds[1,1]
mat[,2] <- mat[,2]*(bnds[2,2]-bnds[2,1])+bnds[2,1]
}
mat
}
fitMod <- function(dose, resp, data = NULL, model = NULL, S = NULL,
type = c("normal", "general"),
addCovars = ~1, placAdj = FALSE, bnds, df = NULL,
start = NULL, na.action = na.fail, control = NULL,
addArgs = NULL){
## check for valid dose, resp and data
cal <- as.character(match.call())
type <- match.arg(type)
lst <- checkAnalyArgs(dose, resp, data, S, type,
addCovars, placAdj, na.action, cal)
doseNam <- lst$doseNam;respNam <- lst$respNam
dose <- lst$dd[[doseNam]];type <- lst$type
resp <- lst$dd[[respNam]];data <- lst$dd;S <- lst$S
covarsUsed <- addCovars != ~1
## check type related arguments
if(type == "general"){
if(placAdj & model %in% c("linlog", "logistic")) # stop as fitting algorithm assumes f^0(0) = 0
stop("logistic and linlog models cannot be fitted to placebo adjusted data")
if(covarsUsed)
stop("addCovars argument ignored for type == \"general\"")
if(is.null(df))
df <- Inf
}
## check whether model has been specified correctly
builtIn <- c("linlog", "linear", "quadratic", "linInt", "emax",
"exponential", "logistic", "betaMod", "sigEmax")
if(missing(model))
stop("Need to specify the model that should be fitted")
modelNum <- match(model, builtIn)
if(is.na(modelNum))
stop("Invalid dose-response model specified")
## check for start argument
if(modelNum < 5 & !is.null(start))
message("Message: Starting values in \"start\" ignored for linear models")
## check for valid bnds
if(modelNum > 4){
if(missing(bnds)){
message("Message: Need bounds in \"bnds\" for nonlinear models, using default bounds from \"defBnds\".")
bnds <- defBnds(max(dose))[[model]]
} else {
if(is.null(bnds)){
message("Message: Need bounds in \"bnds\" for nonlinear models, using default bounds from \"defBnds\".")
bnds <- defBnds(max(dose))[[model]]
}
}
}
## addArgs argument
scal <- off <- nodes <- NULL
if(model %in% c("linlog", "betaMod")){
aPar <- getAddArgs(addArgs, sort(unique(dose)))
if(model == "betaMod")
scal <- aPar$scal
if(model == "linlog")
off <- aPar$off
}
if(model == "linInt"){ ## not allowed to use nodes different from used doses
nodes <- sort(unique(dose))
}
## call fit-model raw!
out <- fitMod.raw(dose, resp, data, model, S, type,
addCovars, placAdj, bnds, df, start,
na.action, control, doseNam=doseNam,
respNam=respNam, off = off, scal = scal,
nodes=nodes, covarsUsed)
## attach data to object
reord <- order(lst$ord)
if(type == "normal"){
if(covarsUsed){
attr(out, "data") <- data[reord,]
} else {
dat <- data.frame(dose=dose, resp=resp)
colnames(dat) <- c(doseNam, respNam)
attr(out, "data") <- dat[reord,]
}
} else {
lst <- list(dose=dose[reord], resp=resp[reord], S=S[reord,reord])
names(lst) <- c(doseNam, respNam, "S")
attr(out, "data") <- lst
}
out
}
fitMod.raw <- function(dose, resp, data, model, S, type,
addCovars = ~1, placAdj = FALSE, bnds, df, start = NULL,
na.action = na.fail, control, doseNam, respNam,
off, scal, nodes, covarsUsed){
## fit model but do not check for arguments (for use in MCPMod function)!
## differences to fitMod:
## - dose, resp need to be vectors containing the data
## - additional args: doseNam, respNam, off, scal
builtIn <- c("linlog", "linear", "quadratic", "linInt", "emax",
"exponential", "logistic", "betaMod", "sigEmax")
modelNum <- match(model, builtIn)
weights <- NULL;clinS <- NULL
## package data for model-fitting
if(type == "general"){ # general approach
dataFit <- data.frame(dose = dose, resp = resp)
## pre-calculate some necessary information
clinS <- chol(solve(S))
} else { # normal data
if(covarsUsed){
dataFit <- data
ind1 <- which(names(dataFit) == doseNam)
ind2 <- which(names(dataFit) == respNam)
names(dataFit)[c(ind1, ind2)] <- c("dose", "resp")
ord <- order(dataFit$dose)
dataFit <- dataFit[ord,] ## sorting by increasing dose is needed for optGrid (specifically getZmat)
} else { ## for efficiency fit on means in case of no covariates
dataFit <- data.frame(dose = sort(unique(dose)),
resp = as.numeric(tapply(resp, dose, mean)))
## calculate within group variance to recover full RSS later
n <- as.vector(table(dose))
vars <- tapply(resp, dose, var)
vars[n == 1] <- 0
S2 <- sum((n - 1) * vars)
weights <- n
}
}
## call actual fitting algorithms
if(is.element(modelNum, 1:4)){ # linear model
fit <- fitModel.lin(dataFit, model, addCovars, off, type,
weights, placAdj, clinS)
} else { # non-linear model
fit <- fitModel.bndnls(dataFit, model, addCovars, type, bnds, control,
start, scal, weights, placAdj, clinS)
}
## now need to post-process
resid <- fit$resid
if(type == "normal" & !covarsUsed) # fitted on means, need to recover full RSS
resid <- fit$resid + S2
## extract levels for factor covariates
if(covarsUsed){
usedVars <- all.vars(addCovars) # variables used for fitting
ind <- sapply(data, function(x) is.factor(x)) # determine factors in data
ind <- is.element(names(data), usedVars) & ind # has the factor been used in fitting?
xlev <- lapply(data[ind], levels) # extract levels
} else {
xlev <- NULL
}
df <- ifelse(is.null(fit$df), df, fit$df)
res <- list(coefs = fit$coefs, resid, df=df,
addCovars = addCovars)
names(res)[2] <- ifelse(type == "normal", "RSS", "gRSS")
attr(res, "model") <- model
attr(res, "type") <- type
attr(res, "placAdj") <- placAdj
attr(res, "addCovars") <- addCovars
attr(res, "xlev") <- xlev
attr(res, "doseRespNam") <- c(doseNam, respNam)
attr(res, "off") <- off
attr(res, "scal") <- scal
attr(res, "nodes") <- nodes
class(res) <- "DRMod"
res
}
fitModel.lin <- function(dataFit, model, addCovars, off, type,
weights, placAdj, clinS){
dose <- dataFit$dose
resp <- dataFit$resp
## build model matrices and fit model using QR decompositions
X <- switch(model,
linear = cbind(1, dose),
linlog = cbind(1, log(dose + off)),
quadratic = cbind(1, dose, dose^2),
linInt = model.matrix(~as.factor(dose)-1, data=dataFit))
if(model == "quadratic"){
nam <- c("e0", "b1", "b2")
} else {
if(model == "linInt"){
nam <- paste("d", sort(unique(dose)), sep="")
} else {
nam <- c("e0", "delta")
}
}
if(placAdj){ # no intercept
if(model != "linInt"){ # only need to remove intercept for non-linInt mods
X <- X[,-1, drop = FALSE]
nam <- nam[-1]
}
}
covarsUsed <- addCovars != ~1
if(type == "normal" & covarsUsed){ # normal with covariates
form <- paste("resp ~", addCovars[2], sep="")
m <- model.matrix(as.formula(form), data = dataFit)
X <- cbind(X, m[,-1])
nam <- c(nam, colnames(m)[-1])
par <- as.numeric(qr.coef(qr(X),resp))
df <- nrow(X)-ncol(X)
} else { # general or normal without covariates
if(type == "normal"){
clinS <- diag(sqrt(weights))
df <- sum(weights) - length(nam)
} else {
df <- NULL
}
par <- as.numeric(qr.coef(qr(clinS%*%X),clinS%*%resp))
}
pred <- as.numeric(X%*%par)
names(par) <- nam
if(covarsUsed){
out <- list(coefs=par, sum((resp-pred)^2), df = df)
} else {
out <- list(coefs=par, as.numeric(crossprod(clinS%*%(resp-pred))), df = df)
}
names(out)[2] <- "resid"
out
}
fitModel.bndnls <- function(dataFit, model, addCovars, type, bnds, control,
start, scal, weights, placAdj, clinS){
ctrl <- fit.control(control)
if(model == "emax"|model == "exponential"){
dim <- 1
if(!is.matrix(bnds))
bnds <- matrix(bnds, nrow = 1)
} else {
dim <- 2
}
dose <- dataFit$dose
resp <- dataFit$resp
## preliminary calculations (need resXY, clinS and qrX)
covarsUsed <- addCovars != ~1
covarNams <- NULL
if(type == "general"){ # general approach
if(placAdj){ # no intercept
resXY <- as.numeric(clinS%*%resp)
} else {
X2 <- clinS%*%matrix(1, nrow = length(dose))
resp2 <- clinS%*%resp
qrX <- qr(X2)
resXY <- as.numeric(qr.resid(qrX, resp2))
}
} else { # normal data
form <- paste("resp ~", addCovars[2], sep="")
m <- model.matrix(as.formula(form), dataFit)
if(covarsUsed){ # covariates present
covarNams <- colnames(m)[2:ncol(m)]
qrX <- qr(m)
resXY <- as.numeric(qr.resid(qrX, resp))
} else { # no covariates: fit on means
clinS <- diag(sqrt(weights))
qrX <- qr(clinS%*%m)
resXY <- as.numeric(qr.resid(qrX, sqrt(weights)*resp))
}
}
## if no starting values provided use grid-search
if(is.null(start)){
opt <- optGrid(model, dim, bnds, ctrl$gridSize, dose, type,
qrX, resXY, clinS, placAdj, scal)
strt <- opt$coefs;resid <- opt$resid
if(dim == 1){ ## refine bounds
N <- ctrl$gridSize$dim1
dif <- (bnds[2]-bnds[1])/N # distance between grid points
bnds[1] <- max(c(strt-1.1*dif), bnds[1])
bnds[2] <- min(c(strt+1.1*dif), bnds[2])
}
} else {
strt <- start;resid <- Inf
}
## start local optimizer at starting value
opt2 <- optLoc(model, dim, bnds, dose, qrX, resXY, strt, scal,
placAdj, type, ctrl$optimizetol, ctrl$nlminbcontrol,
clinS)
## recover names
nam1 <- switch(model, emax = c("eMax", "ed50"),
sigEmax = c("eMax", "ed50", "h"),
logistic = c("eMax", "ed50", "delta"),
exponential = c("e1", "delta"),
betaMod = c("eMax", "delta1", "delta2"))
## recover all parameters from nonlin parameter and return results
f0 <- getStandDR(model, dose, opt2$coefs, scal)
if(type == "general"){ # return "generalized" sum of squares
if(placAdj){ # no intercept
par0 <- sum((clinS %*% f0) * (clinS%*%resp))/sum((clinS %*% f0)^2)
pred <- f0*par0
par <- c(par0, opt2$coefs)
names(par) <- nam1
} else { # with intercept
F <- cbind(1, f0)
par0 <- qr.coef(qr(clinS %*% F), clinS %*% resp)
pred <- F%*%par0
par <- c(par0, opt2$coefs)
names(par) <- c("e0", nam1)
}
return(list(coefs=par, resid = opt2$resid))
} else { ## type == normal
X <- cbind(1,f0,m[,-1])
if(covarsUsed){
par0 <- as.numeric(qr.coef(qr(X),resp))
pred <- as.numeric(X%*%par0)
par <- c(par0[1:2], opt2$coefs, par0[3:length(par0)])
df <- nrow(X) - length(par)
} else { # no covariates; was fitted on means
par0 <- qr.coef(qr(clinS %*% X), clinS %*% resp)
pred <- X%*%par0
par <- c(par0, opt2$coefs)
df <- sum(weights) - length(par)
}
names(par) <- c("e0", nam1, covarNams)
return(list(coefs=par, resid = opt2$resid, df = df))
}
}
optGrid <- function(model, dim, bnds, gridSize, dose, type,
qrX, resXY, wMat, placAdj, scal){
## grid optimizer for non-linear case
N <- ifelse(dim==1, gridSize$dim1, gridSize$dim2)
if(N < 1)
stop("need N >= 1")
nodes <- getGrid(N, bnds, dim)
## calculate residuals
if(type == "normal" & is.null(wMat)){ # normal with covariates
Zmat <- getZmat(dose, nodes, model, dim, scal)
resZmat <- qr.resid(qrX, Zmat)
} else { # normal without covariates or general
Zmat <- getZmat.weighted(dose, nodes, model, dim, scal)
Zmat <- wMat%*%Zmat
if(placAdj & type == "general") # general without intercept
resZmat <- Zmat
else
resZmat <- qr.resid(qrX, Zmat)
}
colsms1 <- colSums(resZmat * resXY)
colsms2 <- colSums(resZmat * resZmat)
RSSvec <- sum(resXY*resXY) - (colsms1*colsms1)/colsms2
indMin <- which.min(RSSvec)
coefs <- nodes[indMin,]
list(coefs=coefs, resid = RSSvec[indMin])
}
getZmat <- function(x, nodes, model, dim, scal=NULL){
getPred <- function(vec, x, model, scal)
getStandDR(model, x, vec, scal)
xU <- sort(unique(x))
n <- as.numeric(table(x))
args <- nodes
res0 <- apply(args, 1, getPred, x=xU, model=model, scal=scal)
Zmat <- apply(res0, 2, function(x,n) rep(x,n), n=n)
Zmat
}
getZmat.weighted <- function(x, nodes, model, dim, scal){
# does not exploit repeated observations
getPred <- function(vec, x, model, scal)
getStandDR(model, x, vec, scal)
args <- nodes
Zmat <- apply(args, 1, getPred, x=x, model=model, scal=scal)
Zmat
}
getStandDR <- function(model, x, nl, scal){
## calculate standardized response for nonlinear models
switch(model,
emax = emax(x, 0, 1, nl),
sigEmax = sigEmax(x, 0, 1, nl[1], nl[2]),
exponential = exponential(x, 0, 1, nl),
logistic = logistic(x, 0, 1, nl[1], nl[2]),
betaMod = betaMod(x, 0, 1, nl[1], nl[2], scal))
}
optLoc <- function(model, dim, bnds, dose, qrX, resXY, start, scal,
placAdj, type, tol, nlminbcontrol, clinS){
## function to calculate ls residuals (to be optimized)
optFunc <- function(nl, x, qrX, resXY, model, scal, clinS){
Z <- getStandDR(model, x, nl, scal)
if(!is.null(clinS)){
Z <- clinS%*%Z
}
if(placAdj & type == "general"){
resXZ <- Z
} else {
resXZ <- try(qr.resid(qrX, Z)) # might be NaN if function is called on strange parameters
if(inherits(resXZ, "try-error"))
return(NA)
}
sumrsXYrsXZ <- sum(resXY*resXZ)
sum(resXY*resXY) - sumrsXYrsXZ*sumrsXYrsXZ/sum(resXZ*resXZ)
}
if(dim == 1){ # one-dimensional models
optobj <- optimize(optFunc, c(bnds[1], bnds[2]), x=dose, qrX=qrX, resXY=resXY,
model = model, tol=tol, clinS=clinS, scal = scal)
coefs <- optobj$minimum
RSS <- optobj$objective
} else {
optobj <- try(nlminb(start, optFunc, x=dose, qrX=qrX, resXY=resXY,
model = model, scal = scal,
lower = bnds[,1], upper = bnds[,2],
control = nlminbcontrol, clinS=clinS))
if(inherits(optobj, "try-error")){
coefs <- RSS <- NA
} else {
coefs <- optobj$par
RSS <- optobj$objective
}
}
list(coefs=coefs, resid=RSS)
}
sepCoef <- function(object){
model <- attr(object, "model")
if(attr(object, "type") == "general")
return(list(DRpars=object$coefs, covarPars = numeric(0)))
if(attr(object, "type") == "normal" & object$addCovars == ~1)
return(list(DRpars=object$coefs, covarPars = numeric(0)))
## determine the number of parameters (not counting e0 and eMax)
if(model %in% c("linear","linlog"))
dim <- 2
if(model %in% c("quadratic", "exponential", "emax"))
dim <- 3
if(model %in% c("sigEmax", "logistic", "betaMod"))
dim <- 4
if(model == "linInt")
dim <- length(attr(object, "nodes"))
cf <- object$coefs
p <- length(cf)
## extract coefficients
DRpars <- cf[1:dim] # coefs of DR model
covarPars <- cf[(dim+1):p]
return(list(DRpars=DRpars, covarPars=covarPars))
}
print.DRMod <- function(x, digits = 4, ...){
if (length(x) == 1) {
cat("NA\n")
return()
}
cat("Dose Response Model\n\n")
cat(paste("Model:", attr(x, "model")), "\n")
cat(paste("Fit-type:", attr(x, "type")), "\n\n")
Coefs <- sepCoef(x)
cat("Coefficients dose-response model\n")
print(signif(Coefs$DRpars, digits))
if(attr(x, "type") == "normal"){
if(x$addCovars != ~1){
cat("Coefficients additional covariates\n")
print(signif(Coefs$covarPars, digits))
}
cat("\nDegrees of freedom:", x$df, "\n")
cat("Residual standard error:",
signif(sqrt(x$RSS/x$df), digits),"\n")
}
if(attr(x, "type") == "general"){
cat("\nFitted to:\n")
doseRespNam <- attr(x, "doseRespNam")
resp <- attr(x, "data")[[doseRespNam[2]]]
names(resp) <- attr(x, "data")[[doseRespNam[1]]]
print(signif(resp, digits))
cat("\nGeneralized residual sum of squares:",
signif(x$gRSS, digits),"\n")
}
}
summary.DRMod <- function(object, digits = 3, ...){
class(object) <- "summary.DRMod"
print(object, digits = digits)
}
print.summary.DRMod <- function(x, digits = 3, data, ...){
if(length(x) == 1){
cat("NA\n")
return()
}
data <- attr(x, "data")
cat("Dose Response Model\n\n")
cat(paste("Model:", attr(x, "model")), "\n")
type <- attr(x, "type")
cat(paste("Fit-type:", type), "\n")
if(type == "normal"){
## residual information
cat("\nResiduals:\n")
nam <- c("Min", "1Q", "Median", "3Q", "Max")
respNam <- attr(x, "doseRespNam")[2]
resid <- predict.DRMod(x, predType = "full-model")-data[[respNam]]
rq <- structure(quantile(resid), names = nam)
print(rq, digits = digits, ...)
}
cat("\nCoefficients with approx. stand. error:\n")
coefs <- x$coef
sdv <- sqrt(diag(vcov.DRMod(x)))
datf <- matrix(nrow = length(coefs), ncol = 2)
datf[,1] <- coefs
datf[,2] <- sdv
colnam <- c("Estimate", "Std. Error")
dimnames(datf) <- list(names(coefs), colnam)
print(datf, digits = digits)
if(type == "normal"){
cat("\nResidual standard error:",
signif(sqrt(x$RSS/x$df), digits), "\n")
cat("Degrees of freedom:", x$df, "\n")
}
if(type == "general"){
doseRespNam <- attr(x, "doseRespNam")
dose <- attr(x, "data")[[doseRespNam[1]]]
drEst <- attr(x, "data")[[doseRespNam[2]]]
names(drEst) <- dose
S <- attr(x, "data")$S
dimnames(S) <- list(dose, dose)
cat("\nFitted to:\n")
print(signif(drEst, digits))
cat("\nwith Covariance Matrix:\n")
print(signif(S, digits))
}
}
## extract coefficients
coef.DRMod <- function(object, sep = FALSE, ...){
if(length(object) == 1){ # object does not contain a converged fit
warning("DRMod object does not contain a converged fit")
return(NA)
}
if(sep){
return(sepCoef(object))
}
object$coefs
}
vcov.DRMod <- function(object, ...){
## object - DRMod object
## uGrad - function returning gradient for userModel
if(length(object) == 1){ # object does not contain a converged fit
warning("DRMod object does not contain a converged fit")
return(NA)
}
type <- attr(object, "type")
model <- attr(object, "model")
cf <- sepCoef(object)$DRpars
nams <- names(coef(object))
scal <- attr(object, "scal")
off <- attr(object, "off")
nodes <- attr(object, "nodes")
doseNam <- attr(object, "doseRespNam")[1]
if(type == "normal"){
addCovars <- object$addCovars
xlev <- attr(object, "xlev")
RSS <- object$RSS
df <- object$df
data <- attr(object, "data")
dose <- attr(object, "data")[[doseNam]]
m <- model.matrix(addCovars, data, xlev = xlev)
}
if(type == "general"){
placAdj <- attr(object, "placAdj")
if(placAdj) # no intercept
cf <- c(0, cf)
dose <- attr(object, "data")[[doseNam]]
inS <- solve(attr(object, "data")$S)
}
grd <- gradCalc(model, cf, dose, off, scal, nodes)
if(type == "normal"){
J <- cbind(grd, m[,-1])
JtJ <- crossprod(J)
covMat <- try(solve(JtJ)*RSS/df, silent=TRUE)
if(!inherits(covMat, "matrix")){
covMat <- try(chol2inv(qr.R(qr(J)))*RSS/df, silent=TRUE) # more stable (a little slower)
if(!inherits(covMat, "matrix")){
warning("cannot calculate covariance matrix. singular matrix in calculation of covariance matrix.")
nrw <- length(grd[1,])
covMat <- matrix(NA, nrow=nrw, ncol=nrw)
}
dimnames(covMat) <- dimnames(JtJ)
}
}
if(type == "general"){
if(placAdj){
if(model != "linInt")
grd <- grd[,-1]
}
covMat <- try(solve(t(grd)%*%inS%*%grd), silent = TRUE)
if(!inherits(covMat, "matrix")) {
warning("cannot calculate covariance matrix. singular matrix in calculation of covariance matrix.")
nrw <- length(grd[1,])
covMat <- matrix(NA, nrow=nrw, ncol=nrw)
}
}
dimnames(covMat) <- list(nams, nams)
covMat
}
gradCalc <- function(model, cf, dose, off, scal, nodes){
## wrapper function to calculate gradient
switch(model,
linear = {
linearGrad(dose)
}, linlog = {
linlogGrad(dose, off=off)
}, quadratic = {
quadraticGrad(dose)
}, emax = {
emaxGrad(dose, eMax = cf[2], ed50 = cf[3])
}, logistic = {
logisticGrad(dose, eMax = cf[2], ed50 = cf[3], delta = cf[4])
}, sigEmax = {
sigEmaxGrad(dose, eMax = cf[2], ed50 = cf[3], h = cf[4])
}, betaMod = {
betaModGrad(dose, eMax = cf[2], delta1 = cf[3], delta2 = cf[4], scal = scal)
}, exponential = {
exponentialGrad(dose, e1 = cf[2], delta = cf[3])
}, linInt = {
linIntGrad(dose, resp=cf, nodes=nodes)
})
}
predict.DRMod <- function(object, predType = c("full-model", "ls-means", "effect-curve"),
newdata = NULL, doseSeq = NULL, se.fit = FALSE, ...){
## Extract relevant information from object
scal <- attr(object, "scal")
off <- attr(object, "off")
nodes <- attr(object, "nodes")
model <- attr(object, "model")
addCovars <- attr(object, "addCovars")
xlev <- attr(object, "xlev")
doseNam <- attr(object, "doseRespNam")[1]
data <- attr(object, "data")
type <- attr(object, "type")
if(missing(predType))
stop("need to specify the type of prediction in \"predType\"")
predType <- match.arg(predType)
## if model fitted on plac-adj. data can only produce predictions for effect-curve
if(attr(object, "placAdj") & predType != "effect-curve"){
message("Message: Setting predType to \"effect-curve\" for placebo-adjusted data")
predType <- "effect-curve"
}
if(type == "general" & predType == "full-model"){ ## there are no covariates
message("Message: Setting predType to \"ls-means\" for \"type = general\"")
predType <- "ls-means"
}
if(predType %in% c("ls-means", "full-model")){
## create design-matrix according to the SAS predType ls-means
if(predType == "ls-means"){
if(!is.null(newdata))
stop("newdata is ignored for \"predType = \"ls-means\"")
if(is.null(doseSeq)){ ## use doses used for fitting
if(type == "normal")
doseSeq <- data[, doseNam]
if(type == "general")
doseSeq <- data[[doseNam]]
}
covarsUsed <- addCovars != ~1
if(covarsUsed){
nams <- all.vars(addCovars)
out <- list()
z <- 1
for(covar in nams){
varb <- data[,covar]
if(is.numeric(varb)){
out[[z]] <- mean(varb)
} else if(is.factor(varb)){
k <- nlevels(varb)
out[[z]] <- rep(1/k, k-1)
}
z <- z+1
}
out <- do.call("c", out)
m <- matrix(rep(out, length(doseSeq)), byrow=TRUE, nrow = length(doseSeq))
}
}
## create design-matrix either from newdata or data used for fitting
if(predType == "full-model"){
if(!is.null(doseSeq) & predType == "full-model")
stop("doseSeq should only be used when predType = \"effect-curve\" or \"ls-means\"")
if(is.null(newdata)){
## if not provided use covariates in observed data
if(type == "normal"){
m <- model.matrix(addCovars, data)
doseSeq <- data[, doseNam]
} else {
doseSeq <- data[[doseNam]]
}
} else {
tms <- c(doseNam, attr(terms(addCovars), "term.labels"))
missind <- !is.element(tms, names(newdata))
if(any(missind)){
chct <- paste("No values specified in newdata for", paste(tms[missind], collapse=", "))
stop(chct)
} else {
m <- model.matrix(addCovars, newdata, xlev = xlev)
doseSeq <- newdata[, doseNam]
if(nrow(m) != length(doseSeq))
stop("incompatible model matrix and doseSeq created from newdata")
}
}
m <- m[,-1, drop=FALSE] # remove intercept column (is necessary)
}
coeflist <- sepCoef(object) # separate coefs of DR model and additional covars
DRpars <- coeflist$DRpars
covarPars <- coeflist$covarPars
## predictions
if(model != "linInt"){
call <- c(list(doseSeq), as.list(c(DRpars, scal, off)))
} else {
call <- c(list(doseSeq), as.list(list(DRpars, nodes)))
}
mn <- do.call(model, call)
if(addCovars != ~1)
mn <- mn + as.numeric(m%*%covarPars)
if(!se.fit){
return(as.numeric(mn))
} else { ## calculate standard error of predictions
covMat <- vcov(object)
if(any(is.na(covMat))){
seFit <- (rep(NA, length(doseSeq)))
} else {
grd <- gradCalc(model, DRpars, doseSeq, off, scal, nodes)
if(addCovars != ~1)
grd <- cbind(grd, m)
cholcovMat <- try(chol(covMat), silent = TRUE)
if (!inherits(cholcovMat, "matrix")) {
warning("Cannot cannot calculate standard deviation for ",
model, " model.\n")
seFit <- rep(NA, length(doseSeq))
} else {
seFit <- sqrt(rowSums((grd%*%t(cholcovMat))^2)) # t(grd)%*%covMat%*%grd
}
}
return(list(fit = mn, se.fit = as.vector(seFit)))
}
}
if(predType == "effect-curve") { ## predict effect curve
if(!is.null(newdata))
stop("newdata is ignored for \"predType = \"effect-curve\"")
if(is.null(doseSeq)){
if(type == "normal")
doseSeq <- data[, doseNam]
if(type == "general")
doseSeq <- data[[doseNam]]
}
coeflist <- sepCoef(object)
DRpars <- coeflist$DRpars
if(attr(object, "placAdj")){
DRpars <- c(0, DRpars)
if(model == "linInt")
nodes <- c(0, nodes)
} else {
if(model != "linInt"){
DRpars[1] <- 0
} else {
DRpars <- DRpars - DRpars[1]
}
}
## predictions
if(model != "linInt"){
call <- c(list(doseSeq), as.list(c(DRpars, scal, off)))
} else {
call <- c(list(doseSeq), as.list(list(DRpars, nodes)))
}
mn <- do.call(model, call)
if(is.element(model,c("logistic", "linlog"))){ # if standardized model not 0 at placebo
call <- c(0, as.list(c(DRpars, scal, off)))
predbase <- do.call(model, call)
mn <- mn-predbase
}
if(!se.fit){
return(as.numeric(mn))
} else { ## calculate st. error (no need to calculate full covMat here)
covMat <- vcov(object)
if(addCovars != ~1) ## remove columns corresponding to covariates
covMat <- covMat[1:length(DRpars), 1:length(DRpars)]
if(!attr(object, "placAdj")){ ## remove intercept from cov-matrix
if(model != "linInt"){
covMat <- covMat[-1,-1]
} else {
diffMat <- cbind(-1,diag(length(DRpars)-1))
covMat <- diffMat%*%covMat%*%t(diffMat)
}
}
if(any(is.na(covMat))){
seFit <- (rep(NA, length(doseSeq)))
} else {
grd <- gradCalc(model, DRpars, doseSeq, off, scal, nodes)
if(!is.matrix(grd)){ # can happen if length(doseSeq) == 1
grd <- matrix(grd, nrow = 1)
}
if(model == "linInt"){
grd <- grd[,-1, drop = FALSE]
} else {
grd0 <- gradCalc(model, DRpars, 0, off, scal, nodes)
grd <- grd[, -1, drop=FALSE]
grd0 <- grd0[,-1]
grd <- sweep(grd, 2, grd0, "-")
}
cholcovMat <- try(chol(covMat), silent = TRUE)
if (!inherits(cholcovMat, "matrix")) {
warning("Cannot cannot calculate standard deviation for ",
model, " model.\n")
seFit <- rep(NA, length(doseSeq))
} else {
seFit <- sqrt(rowSums((grd%*%t(cholcovMat))^2)) # t(grd)%*%covMat%*%grd
}
}
res <- list(fit = mn, se.fit = as.vector(seFit))
return(res)
}
}
}
## plot.DRMod <- function(x, CI = FALSE, level = 0.95,
## plotData = c("means", "meansCI", "none"),
## lenDose = 201, ...){
## ## arguments passed to plot
## pArgs <- list(...)
## ## Extract relevant information from object
## scal <- attr(x, "addArgs")$scal
## off <- attr(x, "addArgs")$off
## model <- attr(x, "model")
## addCovars <- attr(x, "addCovars")
## covarsUsed <- addCovars != ~1
## xlev <- attr(x, "xlev")
## doseNam <- attr(x, "doseRespNam")[1]
## respNam <- attr(x, "doseRespNam")[2]
## data <- attr(x, "data")
## type <- attr(x, "type")
## placAdj <- attr(x, "placAdj")
## doseSeq <- seq(0, max(data[[doseNam]]), length=lenDose)
## plotData <- match.arg(plotData)
## if(type == "normal"){
## ## first produce estimates for ANOVA type model
## if(plotData %in% c("means", "meansCI")){
## data$doseFac <- as.factor(data[[doseNam]])
## form <- as.formula(paste(respNam, "~ doseFac +", addCovars[2]))
## fit <- lm(form, data=data)
## ## build design matrix for prediction
## dose <- sort(unique(data[[doseNam]]))
## preddat <- data.frame(doseFac=factor(dose))
## m <- model.matrix(~doseFac, data=preddat)
## if(covarsUsed){
## ## get sas type ls-means
## nams <- all.vars(addCovars)
## out <- list()
## z <- 1
## for(covar in nams){
## varb <- data[,covar]
## if(is.numeric(varb)){
## out[[z]] <- mean(varb)
## } else if(is.factor(varb)){
## k <- nlevels(varb)
## out[[z]] <- rep(1/k, k-1)
## }
## z <- z+1
## }
## out <- do.call("c", out)
## m0 <- matrix(rep(out, length(dose)), byrow=TRUE, nrow = length(dose))
## m <- cbind(m, m0)
## }
## mns <- as.numeric(m%*%coef(fit))
## lbndm <- ubndm <- rep(NA, length(mns))
## if(plotData == "meansCI"){
## sdv <- sqrt(diag(m%*%vcov(fit)%*%t(m)))
## quant <- qt(1 - (1 - level)/2, df=x$df)
## lbndm <- mns-quant*sdv
## ubndm <- mns+quant*sdv
## }
## }
## }
## if(type == "general"){
## ## extract ANOVA estimates
## if(plotData %in% c("means", "meansCI")){
## dose <- data[[doseNam]]
## mns <- data[[respNam]]
## sdv <- sqrt(diag(data$S))
## lbndm <- ubndm <- rep(NA, length(dose))
## if(plotData == "meansCI"){
## quant <- qnorm(1 - (1 - level)/2)
## lbndm <- mns-quant*sdv
## ubndm <- mns+quant*sdv
## }
## }
## }
## ## curve produced (use "ls-means" apart when data are fitted on placAdj scale)
## predtype <- ifelse(placAdj, "effect-curve", "ls-means")
## predmn <- predict(x, doseSeq = doseSeq, predType = predtype, se.fit = CI)
## lbnd <- ubnd <- rep(NA, length(doseSeq))
## if(CI){
## quant <- qt(1 - (1 - level)/2, df=x$df)
## lbnd <- predmn$fit-quant*predmn$se.fit
## ubnd <- predmn$fit+quant*predmn$se.fit
## predmn <- predmn$fit
## }
## ## determine plotting range
## if(plotData %in% c("means", "meansCI")){
## rng <- range(lbndm, ubndm, mns, predmn, ubnd, lbnd, na.rm=TRUE)
## } else {
## rng <- range(predmn, ubnd, lbnd, na.rm=TRUE)
## }
## dff <- diff(rng)
## ylim <- c(rng[1] - 0.02 * dff, rng[2] + 0.02 * dff)
## ## default title
## main <- "Dose-Response Curve"
## main2 <- ifelse(placAdj, "(placebo-adjusted)", "(ls-means)")
## main <- paste(main, main2)
## ## plot
## callList <- list(doseSeq, predmn, type = "l", col = "white",
## xlab = doseNam, ylim = ylim,
## ylab = respNam, main = main)
## callList[names(pArgs)] <- pArgs
## do.call("plot", callList)
## grid()
## if(plotData %in% c("means", "meansCI")){
## points(dose, mns, pch = 19, cex = 0.75)
## if(plotData == "meansCI"){
## for(i in 1:length(dose)){
## lines(c(dose[i],dose[i]), c(lbndm[i], ubndm[i]), lty=2)
## }
## }
## }
## lines(doseSeq, predmn, lwd=1.5)
## lines(doseSeq, ubnd, lwd=1.5)
## lines(doseSeq, lbnd, lwd=1.5)
## }
plot.DRMod <- function(x, CI = FALSE, level = 0.95,
plotData = c("means", "meansCI", "raw", "none"),
plotGrid = TRUE, colMn = 1, colFit = 1, ...){
plotFunc(x, CI, level, plotData, plotGrid, colMn, colFit, ...)
}
plotFunc <- function(x, CI = FALSE, level = 0.95,
plotData = c("means", "meansCI", "raw", "none"),
plotGrid = TRUE, colMn = 1, colFit = 1, ...){
## Extract relevant information from object
if(class(x) == "DRMod")
obj <- x
if(class(x) == "MCPMod")
obj <- x$mods[[1]]
addCovars <- attr(obj, "addCovars")
covarsUsed <- addCovars != ~1
xlev <- attr(obj, "xlev")
doseNam <- attr(obj, "doseRespNam")[1]
respNam <- attr(obj, "doseRespNam")[2]
data <- attr(obj, "data")
type <- attr(obj, "type")
placAdj <- attr(obj, "placAdj")
plotData <- match.arg(plotData)
if(type == "general" & plotData == "raw")
stop("plotData =\"raw\" only allowed if fitted DRmod object is of type = \"normal\"")
## save anova info in pList list
pList <- as.list(data)
if(type == "normal"){
if(plotData %in% c("means", "meansCI")){
## produce estimates for ANOVA type model
data$doseFac <- as.factor(data[[doseNam]])
form <- as.formula(paste(respNam, "~ doseFac +", addCovars[2]))
fit <- lm(form, data=data)
## build design matrix for prediction
dose <- sort(unique(data[[doseNam]]))
preddat <- data.frame(doseFac=factor(dose))
m <- model.matrix(~doseFac, data=preddat)
if(covarsUsed){
## get sas type ls-means
nams <- all.vars(addCovars)
out <- list()
z <- 1
for(covar in nams){
varb <- data[,covar]
if(is.numeric(varb)){
out[[z]] <- mean(varb)
} else if(is.factor(varb)){
k <- nlevels(varb)
out[[z]] <- rep(1/k, k-1)
}
z <- z+1
}
out <- do.call("c", out)
m0 <- matrix(rep(out, length(dose)), byrow=TRUE, nrow = length(dose))
m <- cbind(m, m0)
}
pList$dos <- sort(unique(data[[doseNam]]))
pList$mns <- as.numeric(m%*%coef(fit))
if(plotData == "meansCI"){
sdv <- sqrt(diag(m%*%vcov(fit)%*%t(m)))
quant <- qt(1 - (1 - level)/2, df=fit$df)
pList$lbndm <- pList$mns-quant*sdv
pList$ubndm <- pList$mns+quant*sdv
}
}
}
if(type == "general"){
## extract ANOVA estimates
if(plotData %in% c("means", "meansCI")){
pList$dos <- data[[doseNam]]
pList$mns <- data[[respNam]]
sdv <- sqrt(diag(data$S))
if(plotData == "meansCI"){
quant <- qnorm(1 - (1 - level)/2)
pList$lbndm <- pList$mns-quant*sdv
pList$ubndm <- pList$mns+quant*sdv
}
}
}
doseSeq <- seq(0, max(data[[doseNam]]), length=201)
## create data frame for plotting dr-functions
predtype <- ifelse(placAdj, "effect-curve", "ls-means")
if(class(x) == "MCPMod"){
nmods <- length(x$mods)
lst <- vector(mode = "list", nmods)
for(i in 1:nmods){
pred <- predict(x$mods[[i]], predType = predtype, doseSeq = doseSeq, se.fit = CI)
lbnd <- ubnd <- rep(NA, length(doseSeq))
if(CI){
quant <- qt(1 - (1 - level)/2, df=x$mods[[i]]$df)
lbnd <- pred$fit-quant*pred$se.fit
ubnd <- pred$fit+quant*pred$se.fit
pred <- pred$fit
}
lst[[i]] <- data.frame(rep(doseSeq, 3), c(pred, lbnd, ubnd),
rep(c("pred", "LB", "UB"), each=length(doseSeq)),
attr(x$mods[[i]], "model"))
}
plotdf <- do.call("rbind", lst)
}
if(class(x) == "DRMod"){
pred <- predict(x, predType = predtype, doseSeq = doseSeq, se.fit = CI)
lbnd <- ubnd <- rep(NA, length(doseSeq))
if(CI){
quant <- qt(1 - (1 - level)/2, df=x$df)
lbnd <- pred$fit-quant*pred$se.fit
ubnd <- pred$fit+quant*pred$se.fit
pred <- pred$fit
}
plotdf <- data.frame(rep(doseSeq, 3), c(pred, lbnd, ubnd),
rep(c("pred", "LB", "UB"), each=length(doseSeq)),
attr(x, "model"))
}
names(plotdf) <- c(doseNam, respNam, "group", "model")
## calculate plotting range
rng <- switch(plotData,
raw = range(data[[respNam]]),
none = range(plotdf[[respNam]], na.rm=TRUE),
range(plotdf[[respNam]], pList$mns, pList$lbndm, pList$ubndm,
na.rm=TRUE))
dff <- diff(rng)
ylim <- c(rng[1] - 0.05 * dff, rng[2] + 0.05 * dff)
## produce plot
form <- as.formula(paste(respNam, "~", doseNam, "|model", sep=""))
print(
xyplot(form, groups = plotdf$group, data = plotdf, pList=pList, ...,
ylim = ylim, panel = function(x, y, ..., pList){
if(plotGrid)
panel.grid(h = -1, v = -1, col = "lightgrey", lty = 2)
if(plotData != "none"){
if(type == "normal" & plotData == "raw"){
lpoints(data[[doseNam]], data[[respNam]], col = "grey45", pch=19)
} else {
lpoints(pList$dos, pList$mns, pch=19, col = colMn)
if(plotData == "meansCI"){
quant <- qnorm(1 - (1 - level)/2)
for(i in 1:length(pList$dos)){
llines(rep(pList$dos[i], 2),
c(pList$lbndm[i], pList$ubndm[i]),
lty=2, col = colMn, ...)
}
}
}
}
panel.xyplot(x, y, col=colFit, type="l", ...)
}))
}
logLik.DRMod <- function(object, ...){
type <- attr(object, "type")
data <- attr(object, "data")
if(type == "normal"){
RSS <- object$RSS
n <- nrow(data)
sig2 <- RSS/n
val <- -n/2*(log(2*pi) + 1 + log(sig2))
attr(val, "df") <- length(object$coefs)+1 # +1 because of sigma parameter
class(val) <- "logLik"
return(val)
}
if(type == "general")
stop("method glogLik only available for type == \"normal\"")
}
AIC.DRMod <- function(object, ..., k = 2){
type <- attr(object, "type")
if(type == "general")
stop("use method gAIC for type == \"general\"")
logL <- logLik(object)
-2*as.vector(logL) + k*(attr(logL, "df"))
}
gAIC <- function (object, ..., k = 2)
UseMethod("gAIC")
gAIC.DRMod <- function(object, ..., k = 2){
type <- attr(object, "type")
if(type == "normal")
stop("use method AIC for type == \"normal\"")
object$gRSS+k*length(object$coefs)
}
|