File: sampSize.R

package info (click to toggle)
r-cran-dosefinding 0.9-17-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 612 kB
  • sloc: ansic: 507; sh: 21; makefile: 2
file content (280 lines) | stat: -rw-r--r-- 9,001 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
## function for sample size calculation and functions to evaluate
## performance metrics for different sample sizes

sampSize <- function (upperN, lowerN = floor(upperN/2),
                      targFunc, target, tol = 0.001, alRatio,
                      Ntype = c("arm", "total"), verbose = FALSE){
  ## target function to iterate
  func <- function(n){
    targFunc(n) - target
  }

  Ntype <- match.arg(Ntype)
  if (!missing(alRatio)) {
    if (any(alRatio <= 0)) {
      stop("all entries of alRatio need to be positive")
    } else {
      alRatio <- alRatio/sum(alRatio)
    }
    if(Ntype == "arm") {
      alRatio <- alRatio/min(alRatio)
    } 
  } else { ## by default assume
    stop("allocation ratios need to be specified")
  }
  
  ## first call
  upper <- func(round(upperN*alRatio))
  if(length(upper) > 1)
    stop("targFunc(n) to evaluate to a vector of length 1.")
  if(!is.numeric(upper))
    stop("targFunc(n) needs to evaluate to a numeric.")

  ## bracket solution
  if (upper < 0)
    message("upper limit for sample size is raised")

  while (upper < 0) {
    upperN <- 2 * upperN
    upper <- func(round(upperN*alRatio))
  }
  
  lower <- func(round(lowerN*alRatio))
  
  if (lower > 0) 
    message("lower limit for sample size is decreased")

  while (lower > 0) {
    lowerN <- round(lowerN/2)
    if (lowerN == 0) 
      stop("cannot find lower limit on n")
    lower <- func(round(lowerN*alRatio))
  }

  ## now start bisection
  if (verbose) {
    cat("Upper N:", upperN, "Upper value", round(upper+target, 4), "\n")
    cat("Lower N:", lowerN, "Lower value", round(lower+target, 4), "\n\n")
  }
  
  current <- tol+1
  niter <- 0
  ## bisect sample size until tolerance is achieved
  while (abs(current) > tol & (upperN > lowerN + 1)) {
    currN <- round((upperN + lowerN)/2)
    current <- func(round(currN * alRatio))
    if (current > 0) {
      upperN <- currN
    } else {
      lowerN <- currN
    }
    niter <- niter + 1
    if (verbose) {
      cat("Iter: ", niter, ", N = ", currN, ", current value = ",
          round(current+target, 4), "\n", sep = "")
    }
  }
  ## increase sample size so that the obtained value is larger than the target
  while (current < 0) {
    currN <- currN + 1
    current <- func(round(currN * alRatio))
  }

  res <- list(samp.size = round(currN * alRatio),
              target = round(current+target, 4))
  attr(res, "alRatio") <- round(alRatio/min(alRatio), 4)
  attr(res, "target") <- target
  attr(res, "Ntype") <- Ntype
  class(res) <- "sampSize"
  res
}

print.sampSize <- function(x, ...){
  cat("Sample size calculation\n\n")
  cat("alRatio:", attr(x, "alRatio"), "\n")
  cat("Total sample size:", sum(x$samp.size), "\n")
  cat("Sample size per arm:", x$samp.size, "\n")
  cat("targFunc:", x$target,"\n")
}

sampSizeMCT <- function(upperN, lowerN = floor(upperN/2),
                        ...,
                        power, sumFct = mean,
                        tol = 0.001, alRatio, Ntype = c("arm", "total"), verbose = FALSE){
  ## function to calculate sample size for multiple contrast test
  ## if S is specified this needs to be the (hypothetical) covariance matrix
  ## for a total sample size of 1 patient
  Ntype <- match.arg(Ntype)
  args <- list(...)
  namargs <- names(args)
  if(is.element("placAdj", namargs)){
    if(args$placAdj)
      stop("placAdj needs to be FALSE for sampSizeMCT.
  Use sampSize directly in placebo-adjusted case.")
  }
  if(is.element("S", namargs)){
    S <- args[["S"]]
    if(Ntype == "arm"){
      Ntype <- "total"
      message("Only Ntype == \"total\" possible if S is specified")
    }
    if(is.element("df", namargs)){
      if(is.finite(args$df))
        message("df argument set to Inf, if S is specified.
Use sampSize directly in case exact df are required.")
    }
    args$df <- Inf
    tFunc <- function(n){
      N <- sum(n)
      Sn <- 1/N*S
      args$S <- Sn
      powVals <- do.call("powMCT", args)
      sumFct(powVals)
    }
  } else {
    if(is.element("n", namargs))
      stop("n is not allowed to be specified for sample size calculation")
    if(!is.element("sigma", namargs))
      stop("need sigma if S is not specified")
    tFunc <- function(n){
      powVals <- powMCT(n=n, ...)
      sumFct(powVals)
    }
  }
  sampSize(upperN, lowerN, targFunc = tFunc, target = power,
           alRatio = alRatio, Ntype = Ntype, verbose = verbose)
}

targN <- function(upperN, lowerN, step, targFunc,
                  alRatio, Ntype = c("arm", "total"), sumFct = c("min", "mean", "max")){

  if(!is.character(sumFct))
    stop("sumFct needs to be a character vector")
  Ntype <- match.arg(Ntype)
  if (!missing(alRatio)) {
    if (any(alRatio <= 0)) {
      stop("all entries of alRatio need to be positive")
    } else {
      alRatio <- alRatio/sum(alRatio)
    }
    if(Ntype == "arm") {
      alRatio <- alRatio/min(alRatio)
    } 
  } else { ## by default assume 
    stop("allocation ratios need to be specified")
  }
  
  nseq <- seq(lowerN, upperN, by=step)
  out <-t(sapply(nseq, function(x){
    targFunc(round(x * alRatio))
  }))
  if(nrow(out) == 1 & length(nseq) > 1){
    out <- t(out)
    colnames(out) <- ""
  }
  out2 <- out
  for(i in 1:length(sumFct)){
    out2 <- cbind(out2, apply(out, 1, sumFct[i]))
  }
  dimnames(out2) <- list(nseq, c(colnames(out), sumFct))
  attr(out2, "alRatio") <- alRatio
  attr(out2, "sumFct") <- sumFct
  attr(out2, "Ntype") <- Ntype
  class(out2) <- "targN"
  out2
}

powN <- function(upperN, lowerN, step,
                 ...,
                 alRatio, Ntype = c("arm", "total"), sumFct = c("min", "mean", "max")){
  args <- list(...)
  namargs <- names(args)
  if(is.element("placAdj", namargs)){
    if(args$placAdj)
      stop("placAdj needs to be FALSE for powN.
  Use targN directly in placebo-adjusted case.")
  }
  Ntype <- match.arg(Ntype)
  if(is.element("S", namargs)){
    S <- args[["S"]]
    if(Ntype == "arm"){
      Ntype <- "total"
      message("Only Ntype == \"total\" possible if S is specified")
    }
    if(is.element("df", namargs)){
      if(is.finite(args$df))
        message("df argument set to Inf, if S is specified.
Use sampSize directly in case exact df are required.")
    }
    args$df <- Inf
    tFunc <- function(n){
      N <- sum(n)
      Sn <- 1/N*S
      args$S <- Sn
      do.call("powMCT", args)
    }
  } else {
    if(is.element("n", namargs))
      stop("n is not allowed to be specified for sample size calculation")
    if(!is.element("sigma", namargs))
      stop("need sigma if S is not specified")
    tFunc <- function(n)
      powMCT(n=n, ...)
  }
  targN(upperN=upperN, lowerN=lowerN, step=step, targFunc=tFunc,
        alRatio=alRatio, Ntype = Ntype, sumFct = sumFct)
}

## Produces Trellis plot of targN object
plot.targN <- function(x, superpose = TRUE, line.at = NULL, 
                       xlab = NULL, ylab = NULL, ...){
  nSeq <- as.integer(dimnames(x)[[1]])
  alRatio <- attr(x, "alRatio")
  unbN <- (length(unique(alRatio)) > 1)
  if (is.null(xlab)) {
    if(attr(x, "Ntype") == "total" | unbN){
      xlab <- "Overall sample size"
      nSeq <- sapply(nSeq, function(x){
        sum(round(x*alRatio))
      })
    } else {
      xlab <- "Sample size per dose (balanced)"
    }
  }
  nams <- dimnames(x)[[2]]
  ## separating model data from summary data
  x <- as.data.frame(unclass(x))
  nams <- names(x)
  nC <- ncol(x)
  pMatTr <- data.frame(targ = as.vector(unlist(x)), n = rep(nSeq, nC),
                       type = factor(rep(nams, each = length(nSeq)), levels = nams))
  if(superpose){
    panelFunc1 <- function(x, y, subscripts, groups, lineAt, ...) {
      panel.grid(h = -1, v = -1, col = "lightgrey", lty = 2)
      if(!is.null(line.at))
        panel.abline(h = lineAt, lty = 3, ..., col = "red")
      panel.superpose(x, y, subscripts, groups, ...)
    }
    trLn <- trellis.par.get("superpose.line")[c("col", "lwd", "lty")]
    for(i in seq(along = trLn)) {
      if(length(trLn[[i]]) > nC) trLn[[i]] <- trLn[[i]][1:nC]
    }
    ltplot <- xyplot(targ ~ n, pMatTr, groups = pMatTr$type, subscripts = TRUE,
                     panel = panelFunc1, type = "l", lineAt = line.at,
                     xlab = xlab, ylab = ylab,
                     key = list(lines = trLn, text = list(lab = nams), transparent = TRUE, 
                       columns = ifelse(nC < 5, nC, min(4,ceiling(nC/min(ceiling(nC/4),3))))), ...)
  } else {                              # models in different panels
    panelFunc2 <- function(x, y, lineAt, ...) {
      panel.grid(h = -1, v = -1, col = "lightgrey", lty = 2)
      if(!is.null(line.at))
        panel.abline(h = lineAt, lty = 3, ..., col = "red") ## used 2 for consistency with above
      panel.xyplot(x, y, ...)
    }
    ltplot <- xyplot(targ ~ n | type, pMatTr, panel = panelFunc2,
                     type = "l", lineAt = line.at,
                     xlab = xlab, ylab = ylab, 
                     strip = function(...) strip.default(..., style = 1), ...)
  }
  print(ltplot)
}