File: all_equal.Rd

package info (click to toggle)
r-cran-dplyr 1.0.10-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,476 kB
  • sloc: cpp: 1,266; sh: 16; makefile: 9
file content (55 lines) | stat: -rw-r--r-- 1,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/all-equal.r
\name{all_equal}
\alias{all_equal}
\title{Flexible equality comparison for data frames}
\usage{
all_equal(
  target,
  current,
  ignore_col_order = TRUE,
  ignore_row_order = TRUE,
  convert = FALSE,
  ...
)
}
\arguments{
\item{target, current}{Two data frames to compare.}

\item{ignore_col_order}{Should order of columns be ignored?}

\item{ignore_row_order}{Should order of rows be ignored?}

\item{convert}{Should similar classes be converted? Currently this will
convert factor to character and integer to double.}

\item{...}{Ignored. Needed for compatibility with \code{all.equal()}.}
}
\value{
\code{TRUE} if equal, otherwise a character vector describing
the reasons why they're not equal. Use \code{\link[=isTRUE]{isTRUE()}} if using the
result in an \code{if} expression.
}
\description{
\code{all_equal()} allows you to compare data frames, optionally ignoring
row and column names. It is questioning as of dplyr 1.0.0, because it
seems to solve a problem that no longer seems that important.
}
\examples{
scramble <- function(x) x[sample(nrow(x)), sample(ncol(x))]

# By default, ordering of rows and columns ignored
all_equal(mtcars, scramble(mtcars))

# But those can be overriden if desired
all_equal(mtcars, scramble(mtcars), ignore_col_order = FALSE)
all_equal(mtcars, scramble(mtcars), ignore_row_order = FALSE)

# By default all_equal is sensitive to variable differences
df1 <- data.frame(x = "a", stringsAsFactors = FALSE)
df2 <- data.frame(x = factor("a"))
all_equal(df1, df2)
# But you can request dplyr convert similar types
all_equal(df1, df2, convert = TRUE)
}
\keyword{internal}