1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/join.r
\name{mutate-joins}
\alias{mutate-joins}
\alias{join}
\alias{join.data.frame}
\alias{inner_join}
\alias{inner_join.data.frame}
\alias{left_join}
\alias{left_join.data.frame}
\alias{right_join}
\alias{right_join.data.frame}
\alias{full_join}
\alias{full_join.data.frame}
\title{Mutating joins}
\usage{
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE
)
\method{inner_join}{data.frame}(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE
)
\method{left_join}{data.frame}(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE
)
\method{right_join}{data.frame}(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)
full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE
)
\method{full_join}{data.frame}(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = FALSE,
na_matches = c("na", "never")
)
}
\arguments{
\item{x, y}{A pair of data frames, data frame extensions (e.g. a tibble), or
lazy data frames (e.g. from dbplyr or dtplyr). See \emph{Methods}, below, for
more details.}
\item{by}{A character vector of variables to join by.
If \code{NULL}, the default, \verb{*_join()} will perform a natural join, using all
variables in common across \code{x} and \code{y}. A message lists the variables so that you
can check they're correct; suppress the message by supplying \code{by} explicitly.
To join by different variables on \code{x} and \code{y}, use a named vector.
For example, \code{by = c("a" = "b")} will match \code{x$a} to \code{y$b}.
To join by multiple variables, use a vector with length > 1.
For example, \code{by = c("a", "b")} will match \code{x$a} to \code{y$a} and \code{x$b} to
\code{y$b}. Use a named vector to match different variables in \code{x} and \code{y}.
For example, \code{by = c("a" = "b", "c" = "d")} will match \code{x$a} to \code{y$b} and
\code{x$c} to \code{y$d}.
To perform a cross-join, generating all combinations of \code{x} and \code{y},
use \code{by = character()}.}
\item{copy}{If \code{x} and \code{y} are not from the same data source,
and \code{copy} is \code{TRUE}, then \code{y} will be copied into the
same src as \code{x}. This allows you to join tables across srcs, but
it is a potentially expensive operation so you must opt into it.}
\item{suffix}{If there are non-joined duplicate variables in \code{x} and
\code{y}, these suffixes will be added to the output to disambiguate them.
Should be a character vector of length 2.}
\item{...}{Other parameters passed onto methods.}
\item{keep}{Should the join keys from both \code{x} and \code{y} be preserved in the
output?}
\item{na_matches}{Should \code{NA} and \code{NaN} values match one another?
The default, \code{"na"}, treats two \code{NA} or \code{NaN} values as equal, like
\code{\%in\%}, \code{\link[=match]{match()}}, \code{\link[=merge]{merge()}}.
Use \code{"never"} to always treat two \code{NA} or \code{NaN} values as different, like
joins for database sources, similarly to \code{merge(incomparables = FALSE)}.}
}
\value{
An object of the same type as \code{x}. The order of the rows and columns of \code{x}
is preserved as much as possible. The output has the following properties:
\itemize{
\item For \code{inner_join()}, a subset of \code{x} rows.
For \code{left_join()}, all \code{x} rows.
For \code{right_join()}, a subset of \code{x} rows, followed by unmatched \code{y} rows.
For \code{full_join()}, all \code{x} rows, followed by unmatched \code{y} rows.
\item For all joins, rows will be duplicated if one or more rows in \code{x} matches
multiple rows in \code{y}.
\item Output columns include all \code{x} columns and all \code{y} columns. If columns in
\code{x} and \code{y} have the same name (and aren't included in \code{by}), \code{suffix}es are
added to disambiguate.
\item Output columns included in \code{by} are coerced to common type across
\code{x} and \code{y}.
\item Groups are taken from \code{x}.
}
}
\description{
The mutating joins add columns from \code{y} to \code{x}, matching rows based on the
keys:
\itemize{
\item \code{inner_join()}: includes all rows in \code{x} and \code{y}.
\item \code{left_join()}: includes all rows in \code{x}.
\item \code{right_join()}: includes all rows in \code{y}.
\item \code{full_join()}: includes all rows in \code{x} or \code{y}.
}
If a row in \code{x} matches multiple rows in \code{y}, all the rows in \code{y} will be returned
once for each matching row in \code{x}.
}
\section{Methods}{
These functions are \strong{generic}s, which means that packages can provide
implementations (methods) for other classes. See the documentation of
individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
\itemize{
\item \code{inner_join()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("inner_join")}.
\item \code{left_join()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("left_join")}.
\item \code{right_join()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("right_join")}.
\item \code{full_join()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("full_join")}.
}
}
\examples{
band_members \%>\% inner_join(band_instruments)
band_members \%>\% left_join(band_instruments)
band_members \%>\% right_join(band_instruments)
band_members \%>\% full_join(band_instruments)
# To suppress the message about joining variables, supply `by`
band_members \%>\% inner_join(band_instruments, by = "name")
# This is good practice in production code
# Use a named `by` if the join variables have different names
band_members \%>\% full_join(band_instruments2, by = c("name" = "artist"))
# By default, the join keys from `x` and `y` are coalesced in the output; use
# `keep = TRUE` to keep the join keys from both `x` and `y`
band_members \%>\%
full_join(band_instruments2, by = c("name" = "artist"), keep = TRUE)
# If a row in `x` matches multiple rows in `y`, all the rows in `y` will be
# returned once for each matching row in `x`
df1 <- tibble(x = 1:3)
df2 <- tibble(x = c(1, 1, 2), y = c("first", "second", "third"))
df1 \%>\% left_join(df2)
# By default, NAs match other NAs so that there are two
# rows in the output of this join:
df1 <- data.frame(x = c(1, NA), y = 2)
df2 <- data.frame(x = c(1, NA), z = 3)
left_join(df1, df2)
# You can optionally request that NAs don't match, giving a
# a result that more closely resembles SQL joins
left_join(df1, df2, na_matches = "never")
}
\seealso{
Other joins:
\code{\link{filter-joins}},
\code{\link{nest_join}()}
}
\concept{joins}
|