1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Column-wise operations</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Column-wise operations</h1>
<p>It’s often useful to perform the same operation on multiple columns,
but copying and pasting is both tedious and error prone:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a>df <span class="sc">%>%</span> </span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a> <span class="fu">group_by</span>(g1, g2) <span class="sc">%>%</span> </span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="at">a =</span> <span class="fu">mean</span>(a), <span class="at">b =</span> <span class="fu">mean</span>(b), <span class="at">c =</span> <span class="fu">mean</span>(c), <span class="at">d =</span> <span class="fu">mean</span>(d))</span></code></pre></div>
<p>(If you’re trying to compute <code>mean(a, b, c, d)</code> for each
row, instead see <code>vignette("rowwise")</code>)</p>
<p>This vignette will introduce you to the <code>across()</code>
function, which lets you rewrite the previous code more succinctly:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>df <span class="sc">%>%</span> </span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a> <span class="fu">group_by</span>(g1, g2) <span class="sc">%>%</span> </span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(a<span class="sc">:</span>d, mean))</span></code></pre></div>
<p>We’ll start by discussing the basic usage of <code>across()</code>,
particularly as it applies to <code>summarise()</code>, and show how to
use it with multiple functions. We’ll then show a few uses with other
verbs. We’ll finish off with a bit of history, showing why we prefer
<code>across()</code> to our last approach (the <code>_if()</code>,
<code>_at()</code> and <code>_all()</code> functions) and how to
translate your old code to the new syntax.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">library</span>(dplyr, <span class="at">warn.conflicts =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<div id="basic-usage" class="section level2">
<h2>Basic usage</h2>
<p><code>across()</code> has two primary arguments:</p>
<ul>
<li><p>The first argument, <code>.cols</code>, selects the columns you
want to operate on. It uses tidy selection (like <code>select()</code>)
so you can pick variables by position, name, and type.</p></li>
<li><p>The second argument, <code>.fns</code>, is a function or list of
functions to apply to each column. This can also be a purrr style
formula (or list of formulas) like <code>~ .x / 2</code>. (This argument
is optional, and you can omit it if you just want to get the underlying
data; you’ll see that technique used in
<code>vignette("rowwise")</code>.)</p></li>
</ul>
<p>Here are a couple of examples of <code>across()</code> in conjunction
with its favourite verb, <code>summarise()</code>. But you can use
<code>across()</code> with any dplyr verb, as you’ll see a little
later.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> </span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character), n_distinct))</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 8</span></span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a><span class="co">#> name hair_color skin_color eye_color sex gender homeworld species</span></span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="co">#> <int> <int> <int> <int> <int> <int> <int> <int></span></span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a><span class="co">#> 1 87 12 31 15 5 3 49 38</span></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a></span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a>starwars <span class="sc">%>%</span> </span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a> <span class="fu">group_by</span>(species) <span class="sc">%>%</span> </span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a> <span class="fu">filter</span>(<span class="fu">n</span>() <span class="sc">></span> <span class="dv">1</span>) <span class="sc">%>%</span> </span>
<span id="cb4-11"><a href="#cb4-11" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">c</span>(sex, gender, homeworld), n_distinct))</span>
<span id="cb4-12"><a href="#cb4-12" tabindex="-1"></a><span class="co">#> # A tibble: 9 × 4</span></span>
<span id="cb4-13"><a href="#cb4-13" tabindex="-1"></a><span class="co">#> species sex gender homeworld</span></span>
<span id="cb4-14"><a href="#cb4-14" tabindex="-1"></a><span class="co">#> <chr> <int> <int> <int></span></span>
<span id="cb4-15"><a href="#cb4-15" tabindex="-1"></a><span class="co">#> 1 Droid 1 2 3</span></span>
<span id="cb4-16"><a href="#cb4-16" tabindex="-1"></a><span class="co">#> 2 Gungan 1 1 1</span></span>
<span id="cb4-17"><a href="#cb4-17" tabindex="-1"></a><span class="co">#> 3 Human 2 2 15</span></span>
<span id="cb4-18"><a href="#cb4-18" tabindex="-1"></a><span class="co">#> 4 Kaminoan 2 2 1</span></span>
<span id="cb4-19"><a href="#cb4-19" tabindex="-1"></a><span class="co">#> # ℹ 5 more rows</span></span>
<span id="cb4-20"><a href="#cb4-20" tabindex="-1"></a></span>
<span id="cb4-21"><a href="#cb4-21" tabindex="-1"></a>starwars <span class="sc">%>%</span> </span>
<span id="cb4-22"><a href="#cb4-22" tabindex="-1"></a> <span class="fu">group_by</span>(homeworld) <span class="sc">%>%</span> </span>
<span id="cb4-23"><a href="#cb4-23" tabindex="-1"></a> <span class="fu">filter</span>(<span class="fu">n</span>() <span class="sc">></span> <span class="dv">1</span>) <span class="sc">%>%</span> </span>
<span id="cb4-24"><a href="#cb4-24" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span> <span class="fu">mean</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)))</span>
<span id="cb4-25"><a href="#cb4-25" tabindex="-1"></a><span class="co">#> # A tibble: 10 × 4</span></span>
<span id="cb4-26"><a href="#cb4-26" tabindex="-1"></a><span class="co">#> homeworld height mass birth_year</span></span>
<span id="cb4-27"><a href="#cb4-27" tabindex="-1"></a><span class="co">#> <chr> <dbl> <dbl> <dbl></span></span>
<span id="cb4-28"><a href="#cb4-28" tabindex="-1"></a><span class="co">#> 1 Alderaan 176. 64 43 </span></span>
<span id="cb4-29"><a href="#cb4-29" tabindex="-1"></a><span class="co">#> 2 Corellia 175 78.5 25 </span></span>
<span id="cb4-30"><a href="#cb4-30" tabindex="-1"></a><span class="co">#> 3 Coruscant 174. 50 91 </span></span>
<span id="cb4-31"><a href="#cb4-31" tabindex="-1"></a><span class="co">#> 4 Kamino 208. 83.1 31.5</span></span>
<span id="cb4-32"><a href="#cb4-32" tabindex="-1"></a><span class="co">#> # ℹ 6 more rows</span></span></code></pre></div>
<p>Because <code>across()</code> is usually used in combination with
<code>summarise()</code> and <code>mutate()</code>, it doesn’t select
grouping variables in order to avoid accidentally modifying them:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">g =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">2</span>), <span class="at">x =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">3</span>), <span class="at">y =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">1</span>, <span class="sc">-</span><span class="dv">4</span>, <span class="sc">-</span><span class="dv">9</span>))</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>df <span class="sc">%>%</span> </span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a> <span class="fu">group_by</span>(g) <span class="sc">%>%</span> </span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sum))</span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#> # A tibble: 2 × 3</span></span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#> g x y</span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#> <dbl> <dbl> <dbl></span></span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#> 1 1 0 -5</span></span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#> 2 2 3 -9</span></span></code></pre></div>
<div id="multiple-functions" class="section level3">
<h3>Multiple functions</h3>
<p>You can transform each variable with more than one function by
supplying a named list of functions or lambda functions in the second
argument:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>min_max <span class="ot"><-</span> <span class="fu">list</span>(</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a> <span class="at">min =</span> <span class="sc">~</span><span class="fu">min</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), </span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a> <span class="at">max =</span> <span class="sc">~</span><span class="fu">max</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)</span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a>)</span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), min_max))</span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 6</span></span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#> height_min height_max mass_min mass_max birth_year_min birth_year_max</span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#> <int> <int> <dbl> <dbl> <dbl> <dbl></span></span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#> 1 66 264 15 1358 8 896</span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), min_max))</span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 6</span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#> height_min height_max mass_min mass_max birth_year_min birth_year_max</span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#> <int> <int> <dbl> <dbl> <dbl> <dbl></span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#> 1 66 264 15 1358 8 896</span></span></code></pre></div>
<p>Control how the names are created with the <code>.names</code>
argument which takes a <a href="https://glue.tidyverse.org/">glue</a>
spec:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), min_max, <span class="at">.names =</span> <span class="st">"{.fn}.{.col}"</span>))</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 6</span></span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> min.height max.height min.mass max.mass min.birth_year max.birth_year</span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#> <int> <int> <dbl> <dbl> <dbl> <dbl></span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> 1 66 264 15 1358 8 896</span></span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), min_max, <span class="at">.names =</span> <span class="st">"{.fn}.{.col}"</span>))</span>
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 6</span></span>
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a><span class="co">#> min.height max.height min.mass max.mass min.birth_year max.birth_year</span></span>
<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="co">#> <int> <int> <dbl> <dbl> <dbl> <dbl></span></span>
<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="co">#> 1 66 264 15 1358 8 896</span></span></code></pre></div>
<p>If you’d prefer all summaries with the same function to be grouped
together, you’ll have to expand the calls yourself:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">summarise</span>(</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a> <span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), <span class="sc">~</span><span class="fu">min</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">"min_{.col}"</span>),</span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a> <span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), <span class="sc">~</span><span class="fu">max</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">"max_{.col}"</span>)</span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a>)</span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 6</span></span>
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a><span class="co">#> min_height min_mass min_birth_year max_height max_mass max_birth_year</span></span>
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a><span class="co">#> <int> <dbl> <dbl> <int> <dbl> <dbl></span></span>
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a><span class="co">#> 1 66 15 8 264 1358 896</span></span></code></pre></div>
<p>(One day this might become an argument to <code>across()</code> but
we’re not yet sure how it would work.)</p>
<p>We cannot however use <code>where(is.numeric)</code> in that last
case because the second <code>across()</code> would pick up the
variables that were newly created (“min_height”, “min_mass” and
“min_birth_year”).</p>
<p>We can work around this by combining both calls to
<code>across()</code> into a single expression that returns a
tibble:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">summarise</span>(</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a> <span class="fu">tibble</span>(</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a> <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span><span class="fu">min</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">"min_{.col}"</span>),</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a> <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span><span class="fu">max</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">"max_{.col}"</span>) </span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a> )</span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a>)</span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 6</span></span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="co">#> min_height min_mass min_birth_year max_height max_mass max_birth_year</span></span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a><span class="co">#> <int> <dbl> <dbl> <int> <dbl> <dbl></span></span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a><span class="co">#> 1 66 15 8 264 1358 896</span></span></code></pre></div>
<p>Alternatively we could reorganize results with
<code>relocate()</code>:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> </span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), min_max, <span class="at">.names =</span> <span class="st">"{.fn}.{.col}"</span>)) <span class="sc">%>%</span> </span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a> <span class="fu">relocate</span>(<span class="fu">starts_with</span>(<span class="st">"min"</span>))</span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 6</span></span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a><span class="co">#> min.height min.mass min.birth_year max.height max.mass max.birth_year</span></span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a><span class="co">#> <int> <dbl> <dbl> <int> <dbl> <dbl></span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="co">#> 1 66 15 8 264 1358 896</span></span></code></pre></div>
</div>
<div id="current-column" class="section level3">
<h3>Current column</h3>
<p>If you need to, you can access the name of the “current” column
inside by calling <code>cur_column()</code>. This can be useful if you
want to perform some sort of context dependent transformation that’s
already encoded in a vector:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, <span class="at">y =</span> <span class="dv">3</span><span class="sc">:</span><span class="dv">5</span>, <span class="at">z =</span> <span class="dv">5</span><span class="sc">:</span><span class="dv">7</span>)</span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a>mult <span class="ot"><-</span> <span class="fu">list</span>(<span class="at">x =</span> <span class="dv">1</span>, <span class="at">y =</span> <span class="dv">10</span>, <span class="at">z =</span> <span class="dv">100</span>)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a></span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">all_of</span>(<span class="fu">names</span>(mult)), <span class="sc">~</span> .x <span class="sc">*</span> mult[[<span class="fu">cur_column</span>()]]))</span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#> # A tibble: 3 × 3</span></span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#> x y z</span></span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#> <dbl> <dbl> <dbl></span></span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#> 1 1 30 500</span></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="co">#> 2 2 40 600</span></span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a><span class="co">#> 3 3 50 700</span></span></code></pre></div>
</div>
<div id="gotchas" class="section level3">
<h3>Gotchas</h3>
<p>Be careful when combining numeric summaries with
<code>where(is.numeric)</code>:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">x =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>), <span class="at">y =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">4</span>, <span class="dv">9</span>))</span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a></span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a>df <span class="sc">%>%</span> </span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="at">n =</span> <span class="fu">n</span>(), <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sd))</span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a><span class="co">#> n x y</span></span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a><span class="co">#> 1 NA 1 4.041452</span></span></code></pre></div>
<p>Here <code>n</code> becomes <code>NA</code> because <code>n</code> is
numeric, so the <code>across()</code> computes its standard deviation,
and the standard deviation of 3 (a constant) is <code>NA</code>. You
probably want to compute <code>n()</code> last to avoid this
problem:</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a>df <span class="sc">%>%</span> </span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sd), <span class="at">n =</span> <span class="fu">n</span>())</span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a><span class="co">#> x y n</span></span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a><span class="co">#> 1 1 4.041452 3</span></span></code></pre></div>
<p>Alternatively, you could explicitly exclude <code>n</code> from the
columns to operate on:</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a>df <span class="sc">%>%</span> </span>
<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="at">n =</span> <span class="fu">n</span>(), <span class="fu">across</span>(<span class="fu">where</span>(is.numeric) <span class="sc">&</span> <span class="sc">!</span>n, sd))</span>
<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a><span class="co">#> n x y</span></span>
<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a><span class="co">#> 1 3 1 4.041452</span></span></code></pre></div>
<p>Another approach is to combine both the call to <code>n()</code> and
<code>across()</code> in a single expression that returns a tibble:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a>df <span class="sc">%>%</span> </span>
<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a> <span class="fu">summarise</span>(</span>
<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a> <span class="fu">tibble</span>(<span class="at">n =</span> <span class="fu">n</span>(), <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sd))</span>
<span id="cb15-4"><a href="#cb15-4" tabindex="-1"></a> )</span>
<span id="cb15-5"><a href="#cb15-5" tabindex="-1"></a><span class="co">#> n x y</span></span>
<span id="cb15-6"><a href="#cb15-6" tabindex="-1"></a><span class="co">#> 1 3 1 4.041452</span></span></code></pre></div>
</div>
<div id="other-verbs" class="section level3">
<h3>Other verbs</h3>
<p>So far we’ve focused on the use of <code>across()</code> with
<code>summarise()</code>, but it works with any other dplyr verb that
uses data masking:</p>
<ul>
<li><p>Rescale all numeric variables to range 0-1:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a>rescale01 <span class="ot"><-</span> <span class="cf">function</span>(x) {</span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a> rng <span class="ot"><-</span> <span class="fu">range</span>(x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)</span>
<span id="cb16-3"><a href="#cb16-3" tabindex="-1"></a> (x <span class="sc">-</span> rng[<span class="dv">1</span>]) <span class="sc">/</span> (rng[<span class="dv">2</span>] <span class="sc">-</span> rng[<span class="dv">1</span>])</span>
<span id="cb16-4"><a href="#cb16-4" tabindex="-1"></a>}</span>
<span id="cb16-5"><a href="#cb16-5" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>, <span class="at">y =</span> <span class="fu">rnorm</span>(<span class="dv">4</span>))</span>
<span id="cb16-6"><a href="#cb16-6" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), rescale01))</span>
<span id="cb16-7"><a href="#cb16-7" tabindex="-1"></a><span class="co">#> # A tibble: 4 × 2</span></span>
<span id="cb16-8"><a href="#cb16-8" tabindex="-1"></a><span class="co">#> x y</span></span>
<span id="cb16-9"><a href="#cb16-9" tabindex="-1"></a><span class="co">#> <dbl> <dbl></span></span>
<span id="cb16-10"><a href="#cb16-10" tabindex="-1"></a><span class="co">#> 1 0 0.385</span></span>
<span id="cb16-11"><a href="#cb16-11" tabindex="-1"></a><span class="co">#> 2 0.333 1 </span></span>
<span id="cb16-12"><a href="#cb16-12" tabindex="-1"></a><span class="co">#> 3 0.667 0 </span></span>
<span id="cb16-13"><a href="#cb16-13" tabindex="-1"></a><span class="co">#> 4 1 0.903</span></span></code></pre></div></li>
</ul>
<p>For some verbs, like <code>group_by()</code>, <code>count()</code>
and <code>distinct()</code>, you don’t need to supply a summary
function, but it can be useful to use tidy-selection to dynamically
select a set of columns. In those cases, we recommend using the
complement to <code>across()</code>, <code>pick()</code>, which works
like <code>across()</code> but doesn’t apply any functions and instead
returns a data frame containing the selected columns.</p>
<ul>
<li><p>Find all distinct</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">distinct</span>(<span class="fu">pick</span>(<span class="fu">contains</span>(<span class="st">"color"</span>)))</span>
<span id="cb17-2"><a href="#cb17-2" tabindex="-1"></a><span class="co">#> # A tibble: 67 × 3</span></span>
<span id="cb17-3"><a href="#cb17-3" tabindex="-1"></a><span class="co">#> hair_color skin_color eye_color</span></span>
<span id="cb17-4"><a href="#cb17-4" tabindex="-1"></a><span class="co">#> <chr> <chr> <chr> </span></span>
<span id="cb17-5"><a href="#cb17-5" tabindex="-1"></a><span class="co">#> 1 blond fair blue </span></span>
<span id="cb17-6"><a href="#cb17-6" tabindex="-1"></a><span class="co">#> 2 <NA> gold yellow </span></span>
<span id="cb17-7"><a href="#cb17-7" tabindex="-1"></a><span class="co">#> 3 <NA> white, blue red </span></span>
<span id="cb17-8"><a href="#cb17-8" tabindex="-1"></a><span class="co">#> 4 none white yellow </span></span>
<span id="cb17-9"><a href="#cb17-9" tabindex="-1"></a><span class="co">#> # ℹ 63 more rows</span></span></code></pre></div></li>
<li><p>Count all combinations of variables with a given pattern:</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> <span class="fu">count</span>(<span class="fu">pick</span>(<span class="fu">contains</span>(<span class="st">"color"</span>)), <span class="at">sort =</span> <span class="cn">TRUE</span>)</span>
<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a><span class="co">#> # A tibble: 67 × 4</span></span>
<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a><span class="co">#> hair_color skin_color eye_color n</span></span>
<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a><span class="co">#> <chr> <chr> <chr> <int></span></span>
<span id="cb18-5"><a href="#cb18-5" tabindex="-1"></a><span class="co">#> 1 brown light brown 6</span></span>
<span id="cb18-6"><a href="#cb18-6" tabindex="-1"></a><span class="co">#> 2 brown fair blue 4</span></span>
<span id="cb18-7"><a href="#cb18-7" tabindex="-1"></a><span class="co">#> 3 none grey black 4</span></span>
<span id="cb18-8"><a href="#cb18-8" tabindex="-1"></a><span class="co">#> 4 black dark brown 3</span></span>
<span id="cb18-9"><a href="#cb18-9" tabindex="-1"></a><span class="co">#> # ℹ 63 more rows</span></span></code></pre></div></li>
</ul>
<p><code>across()</code> doesn’t work with <code>select()</code> or
<code>rename()</code> because they already use tidy select syntax; if
you want to transform column names with a function, you can use
<code>rename_with()</code>.</p>
</div>
<div id="filter" class="section level3">
<h3>filter()</h3>
<p>We cannot directly use <code>across()</code> in <code>filter()</code>
because we need an extra step to combine the results. To that end,
<code>filter()</code> has two special purpose companion functions:</p>
<ul>
<li><code>if_any()</code> keeps the rows where the predicate is true for
<em>at least one</em> selected column:</li>
</ul>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> </span>
<span id="cb19-2"><a href="#cb19-2" tabindex="-1"></a> <span class="fu">filter</span>(<span class="fu">if_any</span>(<span class="fu">everything</span>(), <span class="sc">~</span> <span class="sc">!</span><span class="fu">is.na</span>(.x)))</span>
<span id="cb19-3"><a href="#cb19-3" tabindex="-1"></a><span class="co">#> # A tibble: 87 × 14</span></span>
<span id="cb19-4"><a href="#cb19-4" tabindex="-1"></a><span class="co">#> name height mass hair_color skin_color eye_color birth_year sex gender</span></span>
<span id="cb19-5"><a href="#cb19-5" tabindex="-1"></a><span class="co">#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> </span></span>
<span id="cb19-6"><a href="#cb19-6" tabindex="-1"></a><span class="co">#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…</span></span>
<span id="cb19-7"><a href="#cb19-7" tabindex="-1"></a><span class="co">#> 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…</span></span>
<span id="cb19-8"><a href="#cb19-8" tabindex="-1"></a><span class="co">#> 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…</span></span>
<span id="cb19-9"><a href="#cb19-9" tabindex="-1"></a><span class="co">#> 4 Darth Va… 202 136 none white yellow 41.9 male mascu…</span></span>
<span id="cb19-10"><a href="#cb19-10" tabindex="-1"></a><span class="co">#> # ℹ 83 more rows</span></span>
<span id="cb19-11"><a href="#cb19-11" tabindex="-1"></a><span class="co">#> # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,</span></span>
<span id="cb19-12"><a href="#cb19-12" tabindex="-1"></a><span class="co">#> # vehicles <list>, starships <list></span></span></code></pre></div>
<ul>
<li><code>if_all()</code> keeps the rows where the predicate is true for
<em>all</em> selected columns:</li>
</ul>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a>starwars <span class="sc">%>%</span> </span>
<span id="cb20-2"><a href="#cb20-2" tabindex="-1"></a> <span class="fu">filter</span>(<span class="fu">if_all</span>(<span class="fu">everything</span>(), <span class="sc">~</span> <span class="sc">!</span><span class="fu">is.na</span>(.x)))</span>
<span id="cb20-3"><a href="#cb20-3" tabindex="-1"></a><span class="co">#> # A tibble: 29 × 14</span></span>
<span id="cb20-4"><a href="#cb20-4" tabindex="-1"></a><span class="co">#> name height mass hair_color skin_color eye_color birth_year sex gender</span></span>
<span id="cb20-5"><a href="#cb20-5" tabindex="-1"></a><span class="co">#> <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> </span></span>
<span id="cb20-6"><a href="#cb20-6" tabindex="-1"></a><span class="co">#> 1 Luke Sky… 172 77 blond fair blue 19 male mascu…</span></span>
<span id="cb20-7"><a href="#cb20-7" tabindex="-1"></a><span class="co">#> 2 Darth Va… 202 136 none white yellow 41.9 male mascu…</span></span>
<span id="cb20-8"><a href="#cb20-8" tabindex="-1"></a><span class="co">#> 3 Leia Org… 150 49 brown light brown 19 fema… femin…</span></span>
<span id="cb20-9"><a href="#cb20-9" tabindex="-1"></a><span class="co">#> 4 Owen Lars 178 120 brown, gr… light blue 52 male mascu…</span></span>
<span id="cb20-10"><a href="#cb20-10" tabindex="-1"></a><span class="co">#> # ℹ 25 more rows</span></span>
<span id="cb20-11"><a href="#cb20-11" tabindex="-1"></a><span class="co">#> # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,</span></span>
<span id="cb20-12"><a href="#cb20-12" tabindex="-1"></a><span class="co">#> # vehicles <list>, starships <list></span></span></code></pre></div>
</div>
</div>
<div id="if-_at-_all" class="section level2">
<h2><code>_if</code>, <code>_at</code>, <code>_all</code></h2>
<p>Prior versions of dplyr allowed you to apply a function to multiple
columns in a different way: using functions with <code>_if</code>,
<code>_at</code>, and <code>_all()</code> suffixes. These functions
solved a pressing need and are used by many people, but are now
superseded. That means that they’ll stay around, but won’t receive any
new features and will only get critical bug fixes.</p>
<div id="why-do-we-like-across" class="section level3">
<h3>Why do we like <code>across()</code>?</h3>
<p>Why did we decide to move away from these functions in favour of
<code>across()</code>?</p>
<ol style="list-style-type: decimal">
<li><p><code>across()</code> makes it possible to express useful
summaries that were previously impossible:</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" tabindex="-1"></a>df <span class="sc">%>%</span></span>
<span id="cb21-2"><a href="#cb21-2" tabindex="-1"></a> <span class="fu">group_by</span>(g1, g2) <span class="sc">%>%</span> </span>
<span id="cb21-3"><a href="#cb21-3" tabindex="-1"></a> <span class="fu">summarise</span>(</span>
<span id="cb21-4"><a href="#cb21-4" tabindex="-1"></a> <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), mean), </span>
<span id="cb21-5"><a href="#cb21-5" tabindex="-1"></a> <span class="fu">across</span>(<span class="fu">where</span>(is.factor), nlevels),</span>
<span id="cb21-6"><a href="#cb21-6" tabindex="-1"></a> <span class="at">n =</span> <span class="fu">n</span>(), </span>
<span id="cb21-7"><a href="#cb21-7" tabindex="-1"></a> )</span></code></pre></div></li>
<li><p><code>across()</code> reduces the number of functions that dplyr
needs to provide. This makes dplyr easier for you to use (because there
are fewer functions to remember) and easier for us to implement new
verbs (since we only need to implement one function, not four).</p></li>
<li><p><code>across()</code> unifies <code>_if</code> and
<code>_at</code> semantics so that you can select by position, name, and
type, and you can now create compound selections that were previously
impossible. For example, you can now transform all numeric columns whose
name begins with “x”:
<code>across(where(is.numeric) & starts_with("x"))</code>.</p></li>
<li><p><code>across()</code> doesn’t need to use <code>vars()</code>.
The <code>_at()</code> functions are the only place in dplyr where you
have to manually quote variable names, which makes them a little weird
and hence harder to remember.</p></li>
</ol>
</div>
<div id="why-did-it-take-so-long-to-discover-across" class="section level3">
<h3>Why did it take so long to discover <code>across()</code>?</h3>
<p>It’s disappointing that we didn’t discover <code>across()</code>
earlier, and instead worked through several false starts (first not
realising that it was a common problem, then with the
<code>_each()</code> functions, and most recently with the
<code>_if()</code>/<code>_at()</code>/<code>_all()</code> functions).
But <code>across()</code> couldn’t work without three recent
discoveries:</p>
<ul>
<li><p>You can have a column of a data frame that is itself a data
frame. This is something provided by base R, but it’s not very well
documented, and it took a while to see that it was useful, not just a
theoretical curiosity.</p></li>
<li><p>We can use data frames to allow summary functions to return
multiple columns.</p></li>
<li><p>We can use the absence of an outer name as a convention that you
want to unpack a data frame column into individual columns.</p></li>
</ul>
</div>
<div id="how-do-you-convert-existing-code" class="section level3">
<h3>How do you convert existing code?</h3>
<p>Fortunately, it’s generally straightforward to translate your
existing code to use <code>across()</code>:</p>
<ul>
<li><p>Strip the <code>_if()</code>, <code>_at()</code> and
<code>_all()</code> suffix off the function.</p></li>
<li><p>Call <code>across()</code>. The first argument will be:</p>
<ol style="list-style-type: decimal">
<li>For <code>_if()</code>, the old second argument wrapped in
<code>where()</code>.</li>
<li>For <code>_at()</code>, the old second argument, with the call to
<code>vars()</code> removed.</li>
<li>For <code>_all()</code>, <code>everything()</code>.</li>
</ol>
<p>The subsequent arguments can be copied as is.</p></li>
</ul>
<p>For example:</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate_if</span>(is.numeric, <span class="sc">~</span><span class="fu">mean</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>))</span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a><span class="co"># -></span></span>
<span id="cb22-3"><a href="#cb22-3" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span><span class="fu">mean</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)))</span>
<span id="cb22-4"><a href="#cb22-4" tabindex="-1"></a></span>
<span id="cb22-5"><a href="#cb22-5" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate_at</span>(<span class="fu">vars</span>(<span class="fu">c</span>(x, <span class="fu">starts_with</span>(<span class="st">"y"</span>))), mean)</span>
<span id="cb22-6"><a href="#cb22-6" tabindex="-1"></a><span class="co"># -></span></span>
<span id="cb22-7"><a href="#cb22-7" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">c</span>(x, <span class="fu">starts_with</span>(<span class="st">"y"</span>)), mean))</span>
<span id="cb22-8"><a href="#cb22-8" tabindex="-1"></a></span>
<span id="cb22-9"><a href="#cb22-9" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate_all</span>(mean)</span>
<span id="cb22-10"><a href="#cb22-10" tabindex="-1"></a><span class="co"># -></span></span>
<span id="cb22-11"><a href="#cb22-11" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">everything</span>(), mean))</span></code></pre></div>
<p>There are a few exceptions to this rule:</p>
<ul>
<li><p><code>rename_*()</code> and <code>select_*()</code> follow a
different pattern. They already have select semantics, so are generally
used in a different way that doesn’t have a direct equivalent with
<code>across()</code>; use the new <code>rename_with()</code>
instead.</p></li>
<li><p>Previously, <code>filter_*()</code> were paired with the
<code>all_vars()</code> and <code>any_vars()</code> helpers. The new
helpers <code>if_any()</code> and <code>if_all()</code> can be used
inside <code>filter()</code> to keep rows for which the predicate is
true for at least one, or all selected columns:</p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="fu">c</span>(<span class="st">"a"</span>, <span class="st">"b"</span>), <span class="at">y =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>), <span class="at">z =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">1</span>, <span class="dv">1</span>))</span>
<span id="cb23-2"><a href="#cb23-2" tabindex="-1"></a></span>
<span id="cb23-3"><a href="#cb23-3" tabindex="-1"></a><span class="co"># Find all rows where EVERY numeric variable is greater than zero</span></span>
<span id="cb23-4"><a href="#cb23-4" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">filter</span>(<span class="fu">if_all</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span> .x <span class="sc">></span> <span class="dv">0</span>))</span>
<span id="cb23-5"><a href="#cb23-5" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 3</span></span>
<span id="cb23-6"><a href="#cb23-6" tabindex="-1"></a><span class="co">#> x y z</span></span>
<span id="cb23-7"><a href="#cb23-7" tabindex="-1"></a><span class="co">#> <chr> <dbl> <dbl></span></span>
<span id="cb23-8"><a href="#cb23-8" tabindex="-1"></a><span class="co">#> 1 b 1 1</span></span>
<span id="cb23-9"><a href="#cb23-9" tabindex="-1"></a></span>
<span id="cb23-10"><a href="#cb23-10" tabindex="-1"></a><span class="co"># Find all rows where ANY numeric variable is greater than zero</span></span>
<span id="cb23-11"><a href="#cb23-11" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">filter</span>(<span class="fu">if_any</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span> .x <span class="sc">></span> <span class="dv">0</span>))</span>
<span id="cb23-12"><a href="#cb23-12" tabindex="-1"></a><span class="co">#> # A tibble: 2 × 3</span></span>
<span id="cb23-13"><a href="#cb23-13" tabindex="-1"></a><span class="co">#> x y z</span></span>
<span id="cb23-14"><a href="#cb23-14" tabindex="-1"></a><span class="co">#> <chr> <dbl> <dbl></span></span>
<span id="cb23-15"><a href="#cb23-15" tabindex="-1"></a><span class="co">#> 1 a 1 -1</span></span>
<span id="cb23-16"><a href="#cb23-16" tabindex="-1"></a><span class="co">#> 2 b 1 1</span></span></code></pre></div></li>
<li><p>When used in a <code>mutate()</code>, all transformations
performed by an <code>across()</code> are applied at once. This is
different to the behaviour of <code>mutate_if()</code>,
<code>mutate_at()</code>, and <code>mutate_all()</code>, which apply the
transformations one at a time. We expect that you’ll generally find the
new behaviour less surprising:</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="dv">2</span>, <span class="at">y =</span> <span class="dv">4</span>, <span class="at">z =</span> <span class="dv">8</span>)</span>
<span id="cb24-2"><a href="#cb24-2" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate_all</span>(<span class="sc">~</span> .x <span class="sc">/</span> y)</span>
<span id="cb24-3"><a href="#cb24-3" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 3</span></span>
<span id="cb24-4"><a href="#cb24-4" tabindex="-1"></a><span class="co">#> x y z</span></span>
<span id="cb24-5"><a href="#cb24-5" tabindex="-1"></a><span class="co">#> <dbl> <dbl> <dbl></span></span>
<span id="cb24-6"><a href="#cb24-6" tabindex="-1"></a><span class="co">#> 1 0.5 1 8</span></span>
<span id="cb24-7"><a href="#cb24-7" tabindex="-1"></a></span>
<span id="cb24-8"><a href="#cb24-8" tabindex="-1"></a>df <span class="sc">%>%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">everything</span>(), <span class="sc">~</span> .x <span class="sc">/</span> y))</span>
<span id="cb24-9"><a href="#cb24-9" tabindex="-1"></a><span class="co">#> # A tibble: 1 × 3</span></span>
<span id="cb24-10"><a href="#cb24-10" tabindex="-1"></a><span class="co">#> x y z</span></span>
<span id="cb24-11"><a href="#cb24-11" tabindex="-1"></a><span class="co">#> <dbl> <dbl> <dbl></span></span>
<span id="cb24-12"><a href="#cb24-12" tabindex="-1"></a><span class="co">#> 1 0.5 1 2</span></span></code></pre></div></li>
</ul>
</div>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|