File: colwise.html

package info (click to toggle)
r-cran-dplyr 1.1.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,292 kB
  • sloc: cpp: 1,403; sh: 17; makefile: 7
file content (794 lines) | stat: -rw-r--r-- 57,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />



<title>Column-wise operations</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>



<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } 
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.at { color: #7d9029; } 
code span.bn { color: #40a070; } 
code span.bu { color: #008000; } 
code span.cf { color: #007020; font-weight: bold; } 
code span.ch { color: #4070a0; } 
code span.cn { color: #880000; } 
code span.co { color: #60a0b0; font-style: italic; } 
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.do { color: #ba2121; font-style: italic; } 
code span.dt { color: #902000; } 
code span.dv { color: #40a070; } 
code span.er { color: #ff0000; font-weight: bold; } 
code span.ex { } 
code span.fl { color: #40a070; } 
code span.fu { color: #06287e; } 
code span.im { color: #008000; font-weight: bold; } 
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.kw { color: #007020; font-weight: bold; } 
code span.op { color: #666666; } 
code span.ot { color: #007020; } 
code span.pp { color: #bc7a00; } 
code span.sc { color: #4070a0; } 
code span.ss { color: #bb6688; } 
code span.st { color: #4070a0; } 
code span.va { color: #19177c; } 
code span.vs { color: #4070a0; } 
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">Column-wise operations</h1>



<p>It’s often useful to perform the same operation on multiple columns,
but copying and pasting is both tedious and error prone:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a>df <span class="sc">%&gt;%</span> </span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a>  <span class="fu">group_by</span>(g1, g2) <span class="sc">%&gt;%</span> </span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="at">a =</span> <span class="fu">mean</span>(a), <span class="at">b =</span> <span class="fu">mean</span>(b), <span class="at">c =</span> <span class="fu">mean</span>(c), <span class="at">d =</span> <span class="fu">mean</span>(d))</span></code></pre></div>
<p>(If you’re trying to compute <code>mean(a, b, c, d)</code> for each
row, instead see <code>vignette(&quot;rowwise&quot;)</code>)</p>
<p>This vignette will introduce you to the <code>across()</code>
function, which lets you rewrite the previous code more succinctly:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a>df <span class="sc">%&gt;%</span> </span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>  <span class="fu">group_by</span>(g1, g2) <span class="sc">%&gt;%</span> </span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="fu">across</span>(a<span class="sc">:</span>d, mean))</span></code></pre></div>
<p>We’ll start by discussing the basic usage of <code>across()</code>,
particularly as it applies to <code>summarise()</code>, and show how to
use it with multiple functions. We’ll then show a few uses with other
verbs. We’ll finish off with a bit of history, showing why we prefer
<code>across()</code> to our last approach (the <code>_if()</code>,
<code>_at()</code> and <code>_all()</code> functions) and how to
translate your old code to the new syntax.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">library</span>(dplyr, <span class="at">warn.conflicts =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<div id="basic-usage" class="section level2">
<h2>Basic usage</h2>
<p><code>across()</code> has two primary arguments:</p>
<ul>
<li><p>The first argument, <code>.cols</code>, selects the columns you
want to operate on. It uses tidy selection (like <code>select()</code>)
so you can pick variables by position, name, and type.</p></li>
<li><p>The second argument, <code>.fns</code>, is a function or list of
functions to apply to each column. This can also be a purrr style
formula (or list of formulas) like <code>~ .x / 2</code>. (This argument
is optional, and you can omit it if you just want to get the underlying
data; you’ll see that technique used in
<code>vignette(&quot;rowwise&quot;)</code>.)</p></li>
</ul>
<p>Here are a couple of examples of <code>across()</code> in conjunction
with its favourite verb, <code>summarise()</code>. But you can use
<code>across()</code> with any dplyr verb, as you’ll see a little
later.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> </span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.character), n_distinct))</span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 8</span></span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a><span class="co">#&gt;    name hair_color skin_color eye_color   sex gender homeworld species</span></span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="co">#&gt;   &lt;int&gt;      &lt;int&gt;      &lt;int&gt;     &lt;int&gt; &lt;int&gt;  &lt;int&gt;     &lt;int&gt;   &lt;int&gt;</span></span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a><span class="co">#&gt; 1    87         12         31        15     5      3        49      38</span></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a></span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> </span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a>  <span class="fu">group_by</span>(species) <span class="sc">%&gt;%</span> </span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a>  <span class="fu">filter</span>(<span class="fu">n</span>() <span class="sc">&gt;</span> <span class="dv">1</span>) <span class="sc">%&gt;%</span> </span>
<span id="cb4-11"><a href="#cb4-11" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">c</span>(sex, gender, homeworld), n_distinct))</span>
<span id="cb4-12"><a href="#cb4-12" tabindex="-1"></a><span class="co">#&gt; # A tibble: 9 × 4</span></span>
<span id="cb4-13"><a href="#cb4-13" tabindex="-1"></a><span class="co">#&gt;   species    sex gender homeworld</span></span>
<span id="cb4-14"><a href="#cb4-14" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;    &lt;int&gt;  &lt;int&gt;     &lt;int&gt;</span></span>
<span id="cb4-15"><a href="#cb4-15" tabindex="-1"></a><span class="co">#&gt; 1 Droid        1      2         3</span></span>
<span id="cb4-16"><a href="#cb4-16" tabindex="-1"></a><span class="co">#&gt; 2 Gungan       1      1         1</span></span>
<span id="cb4-17"><a href="#cb4-17" tabindex="-1"></a><span class="co">#&gt; 3 Human        2      2        15</span></span>
<span id="cb4-18"><a href="#cb4-18" tabindex="-1"></a><span class="co">#&gt; 4 Kaminoan     2      2         1</span></span>
<span id="cb4-19"><a href="#cb4-19" tabindex="-1"></a><span class="co">#&gt; # ℹ 5 more rows</span></span>
<span id="cb4-20"><a href="#cb4-20" tabindex="-1"></a></span>
<span id="cb4-21"><a href="#cb4-21" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> </span>
<span id="cb4-22"><a href="#cb4-22" tabindex="-1"></a>  <span class="fu">group_by</span>(homeworld) <span class="sc">%&gt;%</span> </span>
<span id="cb4-23"><a href="#cb4-23" tabindex="-1"></a>  <span class="fu">filter</span>(<span class="fu">n</span>() <span class="sc">&gt;</span> <span class="dv">1</span>) <span class="sc">%&gt;%</span> </span>
<span id="cb4-24"><a href="#cb4-24" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span> <span class="fu">mean</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)))</span>
<span id="cb4-25"><a href="#cb4-25" tabindex="-1"></a><span class="co">#&gt; # A tibble: 10 × 4</span></span>
<span id="cb4-26"><a href="#cb4-26" tabindex="-1"></a><span class="co">#&gt;   homeworld height  mass birth_year</span></span>
<span id="cb4-27"><a href="#cb4-27" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;      &lt;dbl&gt; &lt;dbl&gt;      &lt;dbl&gt;</span></span>
<span id="cb4-28"><a href="#cb4-28" tabindex="-1"></a><span class="co">#&gt; 1 Alderaan    176.  64         43  </span></span>
<span id="cb4-29"><a href="#cb4-29" tabindex="-1"></a><span class="co">#&gt; 2 Corellia    175   78.5       25  </span></span>
<span id="cb4-30"><a href="#cb4-30" tabindex="-1"></a><span class="co">#&gt; 3 Coruscant   174.  50         91  </span></span>
<span id="cb4-31"><a href="#cb4-31" tabindex="-1"></a><span class="co">#&gt; 4 Kamino      208.  83.1       31.5</span></span>
<span id="cb4-32"><a href="#cb4-32" tabindex="-1"></a><span class="co">#&gt; # ℹ 6 more rows</span></span></code></pre></div>
<p>Because <code>across()</code> is usually used in combination with
<code>summarise()</code> and <code>mutate()</code>, it doesn’t select
grouping variables in order to avoid accidentally modifying them:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">g =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">2</span>), <span class="at">x =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">3</span>), <span class="at">y =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">1</span>, <span class="sc">-</span><span class="dv">4</span>, <span class="sc">-</span><span class="dv">9</span>))</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>df <span class="sc">%&gt;%</span> </span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a>  <span class="fu">group_by</span>(g) <span class="sc">%&gt;%</span> </span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sum))</span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#&gt; # A tibble: 2 × 3</span></span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#&gt;       g     x     y</span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#&gt; 1     1     0    -5</span></span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#&gt; 2     2     3    -9</span></span></code></pre></div>
<div id="multiple-functions" class="section level3">
<h3>Multiple functions</h3>
<p>You can transform each variable with more than one function by
supplying a named list of functions or lambda functions in the second
argument:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>min_max <span class="ot">&lt;-</span> <span class="fu">list</span>(</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>  <span class="at">min =</span> <span class="sc">~</span><span class="fu">min</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), </span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a>  <span class="at">max =</span> <span class="sc">~</span><span class="fu">max</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)</span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a>)</span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), min_max))</span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#&gt;   height_min height_max mass_min mass_max birth_year_min birth_year_max</span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#&gt;        &lt;int&gt;      &lt;int&gt;    &lt;dbl&gt;    &lt;dbl&gt;          &lt;dbl&gt;          &lt;dbl&gt;</span></span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#&gt; 1         66        264       15     1358              8            896</span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), min_max))</span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#&gt;   height_min height_max mass_min mass_max birth_year_min birth_year_max</span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#&gt;        &lt;int&gt;      &lt;int&gt;    &lt;dbl&gt;    &lt;dbl&gt;          &lt;dbl&gt;          &lt;dbl&gt;</span></span>
<span id="cb6-14"><a href="#cb6-14" tabindex="-1"></a><span class="co">#&gt; 1         66        264       15     1358              8            896</span></span></code></pre></div>
<p>Control how the names are created with the <code>.names</code>
argument which takes a <a href="https://glue.tidyverse.org/">glue</a>
spec:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), min_max, <span class="at">.names =</span> <span class="st">&quot;{.fn}.{.col}&quot;</span>))</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#&gt;   min.height max.height min.mass max.mass min.birth_year max.birth_year</span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#&gt;        &lt;int&gt;      &lt;int&gt;    &lt;dbl&gt;    &lt;dbl&gt;          &lt;dbl&gt;          &lt;dbl&gt;</span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#&gt; 1         66        264       15     1358              8            896</span></span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), min_max, <span class="at">.names =</span> <span class="st">&quot;{.fn}.{.col}&quot;</span>))</span>
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a><span class="co">#&gt;   min.height max.height min.mass max.mass min.birth_year max.birth_year</span></span>
<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="co">#&gt;        &lt;int&gt;      &lt;int&gt;    &lt;dbl&gt;    &lt;dbl&gt;          &lt;dbl&gt;          &lt;dbl&gt;</span></span>
<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="co">#&gt; 1         66        264       15     1358              8            896</span></span></code></pre></div>
<p>If you’d prefer all summaries with the same function to be grouped
together, you’ll have to expand the calls yourself:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">summarise</span>(</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a>  <span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), <span class="sc">~</span><span class="fu">min</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">&quot;min_{.col}&quot;</span>),</span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a>  <span class="fu">across</span>(<span class="fu">c</span>(height, mass, birth_year), <span class="sc">~</span><span class="fu">max</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">&quot;max_{.col}&quot;</span>)</span>
<span id="cb8-4"><a href="#cb8-4" tabindex="-1"></a>)</span>
<span id="cb8-5"><a href="#cb8-5" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb8-6"><a href="#cb8-6" tabindex="-1"></a><span class="co">#&gt;   min_height min_mass min_birth_year max_height max_mass max_birth_year</span></span>
<span id="cb8-7"><a href="#cb8-7" tabindex="-1"></a><span class="co">#&gt;        &lt;int&gt;    &lt;dbl&gt;          &lt;dbl&gt;      &lt;int&gt;    &lt;dbl&gt;          &lt;dbl&gt;</span></span>
<span id="cb8-8"><a href="#cb8-8" tabindex="-1"></a><span class="co">#&gt; 1         66       15              8        264     1358            896</span></span></code></pre></div>
<p>(One day this might become an argument to <code>across()</code> but
we’re not yet sure how it would work.)</p>
<p>We cannot however use <code>where(is.numeric)</code> in that last
case because the second <code>across()</code> would pick up the
variables that were newly created (“min_height”, “min_mass” and
“min_birth_year”).</p>
<p>We can work around this by combining both calls to
<code>across()</code> into a single expression that returns a
tibble:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">summarise</span>(</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>  <span class="fu">tibble</span>(</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a>    <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span><span class="fu">min</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">&quot;min_{.col}&quot;</span>),</span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a>    <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span><span class="fu">max</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>), <span class="at">.names =</span> <span class="st">&quot;max_{.col}&quot;</span>)  </span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a>  )</span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a>)</span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="co">#&gt;   min_height min_mass min_birth_year max_height max_mass max_birth_year</span></span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a><span class="co">#&gt;        &lt;int&gt;    &lt;dbl&gt;          &lt;dbl&gt;      &lt;int&gt;    &lt;dbl&gt;          &lt;dbl&gt;</span></span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a><span class="co">#&gt; 1         66       15              8        264     1358            896</span></span></code></pre></div>
<p>Alternatively we could reorganize results with
<code>relocate()</code>:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> </span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), min_max, <span class="at">.names =</span> <span class="st">&quot;{.fn}.{.col}&quot;</span>)) <span class="sc">%&gt;%</span> </span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a>  <span class="fu">relocate</span>(<span class="fu">starts_with</span>(<span class="st">&quot;min&quot;</span>))</span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 6</span></span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a><span class="co">#&gt;   min.height min.mass min.birth_year max.height max.mass max.birth_year</span></span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a><span class="co">#&gt;        &lt;int&gt;    &lt;dbl&gt;          &lt;dbl&gt;      &lt;int&gt;    &lt;dbl&gt;          &lt;dbl&gt;</span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="co">#&gt; 1         66       15              8        264     1358            896</span></span></code></pre></div>
</div>
<div id="current-column" class="section level3">
<h3>Current column</h3>
<p>If you need to, you can access the name of the “current” column
inside by calling <code>cur_column()</code>. This can be useful if you
want to perform some sort of context dependent transformation that’s
already encoded in a vector:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">3</span>, <span class="at">y =</span> <span class="dv">3</span><span class="sc">:</span><span class="dv">5</span>, <span class="at">z =</span> <span class="dv">5</span><span class="sc">:</span><span class="dv">7</span>)</span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a>mult <span class="ot">&lt;-</span> <span class="fu">list</span>(<span class="at">x =</span> <span class="dv">1</span>, <span class="at">y =</span> <span class="dv">10</span>, <span class="at">z =</span> <span class="dv">100</span>)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a></span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">all_of</span>(<span class="fu">names</span>(mult)), <span class="sc">~</span> .x <span class="sc">*</span> mult[[<span class="fu">cur_column</span>()]]))</span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#&gt; # A tibble: 3 × 3</span></span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#&gt;       x     y     z</span></span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#&gt; 1     1    30   500</span></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="co">#&gt; 2     2    40   600</span></span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a><span class="co">#&gt; 3     3    50   700</span></span></code></pre></div>
</div>
<div id="gotchas" class="section level3">
<h3>Gotchas</h3>
<p>Be careful when combining numeric summaries with
<code>where(is.numeric)</code>:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">data.frame</span>(<span class="at">x =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">3</span>), <span class="at">y =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">4</span>, <span class="dv">9</span>))</span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a></span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a>df <span class="sc">%&gt;%</span> </span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="at">n =</span> <span class="fu">n</span>(), <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sd))</span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a><span class="co">#&gt;    n x        y</span></span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a><span class="co">#&gt; 1 NA 1 4.041452</span></span></code></pre></div>
<p>Here <code>n</code> becomes <code>NA</code> because <code>n</code> is
numeric, so the <code>across()</code> computes its standard deviation,
and the standard deviation of 3 (a constant) is <code>NA</code>. You
probably want to compute <code>n()</code> last to avoid this
problem:</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a>df <span class="sc">%&gt;%</span> </span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sd), <span class="at">n =</span> <span class="fu">n</span>())</span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a><span class="co">#&gt;   x        y n</span></span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a><span class="co">#&gt; 1 1 4.041452 3</span></span></code></pre></div>
<p>Alternatively, you could explicitly exclude <code>n</code> from the
columns to operate on:</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a>df <span class="sc">%&gt;%</span> </span>
<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a>  <span class="fu">summarise</span>(<span class="at">n =</span> <span class="fu">n</span>(), <span class="fu">across</span>(<span class="fu">where</span>(is.numeric) <span class="sc">&amp;</span> <span class="sc">!</span>n, sd))</span>
<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a><span class="co">#&gt;   n x        y</span></span>
<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a><span class="co">#&gt; 1 3 1 4.041452</span></span></code></pre></div>
<p>Another approach is to combine both the call to <code>n()</code> and
<code>across()</code> in a single expression that returns a tibble:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a>df <span class="sc">%&gt;%</span> </span>
<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a>  <span class="fu">summarise</span>(</span>
<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a>    <span class="fu">tibble</span>(<span class="at">n =</span> <span class="fu">n</span>(), <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), sd))</span>
<span id="cb15-4"><a href="#cb15-4" tabindex="-1"></a>  )</span>
<span id="cb15-5"><a href="#cb15-5" tabindex="-1"></a><span class="co">#&gt;   n x        y</span></span>
<span id="cb15-6"><a href="#cb15-6" tabindex="-1"></a><span class="co">#&gt; 1 3 1 4.041452</span></span></code></pre></div>
</div>
<div id="other-verbs" class="section level3">
<h3>Other verbs</h3>
<p>So far we’ve focused on the use of <code>across()</code> with
<code>summarise()</code>, but it works with any other dplyr verb that
uses data masking:</p>
<ul>
<li><p>Rescale all numeric variables to range 0-1:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a>rescale01 <span class="ot">&lt;-</span> <span class="cf">function</span>(x) {</span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a>  rng <span class="ot">&lt;-</span> <span class="fu">range</span>(x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)</span>
<span id="cb16-3"><a href="#cb16-3" tabindex="-1"></a>  (x <span class="sc">-</span> rng[<span class="dv">1</span>]) <span class="sc">/</span> (rng[<span class="dv">2</span>] <span class="sc">-</span> rng[<span class="dv">1</span>])</span>
<span id="cb16-4"><a href="#cb16-4" tabindex="-1"></a>}</span>
<span id="cb16-5"><a href="#cb16-5" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>, <span class="at">y =</span> <span class="fu">rnorm</span>(<span class="dv">4</span>))</span>
<span id="cb16-6"><a href="#cb16-6" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), rescale01))</span>
<span id="cb16-7"><a href="#cb16-7" tabindex="-1"></a><span class="co">#&gt; # A tibble: 4 × 2</span></span>
<span id="cb16-8"><a href="#cb16-8" tabindex="-1"></a><span class="co">#&gt;       x     y</span></span>
<span id="cb16-9"><a href="#cb16-9" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb16-10"><a href="#cb16-10" tabindex="-1"></a><span class="co">#&gt; 1 0     0.385</span></span>
<span id="cb16-11"><a href="#cb16-11" tabindex="-1"></a><span class="co">#&gt; 2 0.333 1    </span></span>
<span id="cb16-12"><a href="#cb16-12" tabindex="-1"></a><span class="co">#&gt; 3 0.667 0    </span></span>
<span id="cb16-13"><a href="#cb16-13" tabindex="-1"></a><span class="co">#&gt; 4 1     0.903</span></span></code></pre></div></li>
</ul>
<p>For some verbs, like <code>group_by()</code>, <code>count()</code>
and <code>distinct()</code>, you don’t need to supply a summary
function, but it can be useful to use tidy-selection to dynamically
select a set of columns. In those cases, we recommend using the
complement to <code>across()</code>, <code>pick()</code>, which works
like <code>across()</code> but doesn’t apply any functions and instead
returns a data frame containing the selected columns.</p>
<ul>
<li><p>Find all distinct</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">distinct</span>(<span class="fu">pick</span>(<span class="fu">contains</span>(<span class="st">&quot;color&quot;</span>)))</span>
<span id="cb17-2"><a href="#cb17-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 67 × 3</span></span>
<span id="cb17-3"><a href="#cb17-3" tabindex="-1"></a><span class="co">#&gt;   hair_color skin_color  eye_color</span></span>
<span id="cb17-4"><a href="#cb17-4" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;      &lt;chr&gt;       &lt;chr&gt;    </span></span>
<span id="cb17-5"><a href="#cb17-5" tabindex="-1"></a><span class="co">#&gt; 1 blond      fair        blue     </span></span>
<span id="cb17-6"><a href="#cb17-6" tabindex="-1"></a><span class="co">#&gt; 2 &lt;NA&gt;       gold        yellow   </span></span>
<span id="cb17-7"><a href="#cb17-7" tabindex="-1"></a><span class="co">#&gt; 3 &lt;NA&gt;       white, blue red      </span></span>
<span id="cb17-8"><a href="#cb17-8" tabindex="-1"></a><span class="co">#&gt; 4 none       white       yellow   </span></span>
<span id="cb17-9"><a href="#cb17-9" tabindex="-1"></a><span class="co">#&gt; # ℹ 63 more rows</span></span></code></pre></div></li>
<li><p>Count all combinations of variables with a given pattern:</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> <span class="fu">count</span>(<span class="fu">pick</span>(<span class="fu">contains</span>(<span class="st">&quot;color&quot;</span>)), <span class="at">sort =</span> <span class="cn">TRUE</span>)</span>
<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a><span class="co">#&gt; # A tibble: 67 × 4</span></span>
<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a><span class="co">#&gt;   hair_color skin_color eye_color     n</span></span>
<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;      &lt;chr&gt;      &lt;chr&gt;     &lt;int&gt;</span></span>
<span id="cb18-5"><a href="#cb18-5" tabindex="-1"></a><span class="co">#&gt; 1 brown      light      brown         6</span></span>
<span id="cb18-6"><a href="#cb18-6" tabindex="-1"></a><span class="co">#&gt; 2 brown      fair       blue          4</span></span>
<span id="cb18-7"><a href="#cb18-7" tabindex="-1"></a><span class="co">#&gt; 3 none       grey       black         4</span></span>
<span id="cb18-8"><a href="#cb18-8" tabindex="-1"></a><span class="co">#&gt; 4 black      dark       brown         3</span></span>
<span id="cb18-9"><a href="#cb18-9" tabindex="-1"></a><span class="co">#&gt; # ℹ 63 more rows</span></span></code></pre></div></li>
</ul>
<p><code>across()</code> doesn’t work with <code>select()</code> or
<code>rename()</code> because they already use tidy select syntax; if
you want to transform column names with a function, you can use
<code>rename_with()</code>.</p>
</div>
<div id="filter" class="section level3">
<h3>filter()</h3>
<p>We cannot directly use <code>across()</code> in <code>filter()</code>
because we need an extra step to combine the results. To that end,
<code>filter()</code> has two special purpose companion functions:</p>
<ul>
<li><code>if_any()</code> keeps the rows where the predicate is true for
<em>at least one</em> selected column:</li>
</ul>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> </span>
<span id="cb19-2"><a href="#cb19-2" tabindex="-1"></a>  <span class="fu">filter</span>(<span class="fu">if_any</span>(<span class="fu">everything</span>(), <span class="sc">~</span> <span class="sc">!</span><span class="fu">is.na</span>(.x)))</span>
<span id="cb19-3"><a href="#cb19-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 87 × 14</span></span>
<span id="cb19-4"><a href="#cb19-4" tabindex="-1"></a><span class="co">#&gt;   name      height  mass hair_color skin_color eye_color birth_year sex   gender</span></span>
<span id="cb19-5"><a href="#cb19-5" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;      &lt;int&gt; &lt;dbl&gt; &lt;chr&gt;      &lt;chr&gt;      &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt; &lt;chr&gt; </span></span>
<span id="cb19-6"><a href="#cb19-6" tabindex="-1"></a><span class="co">#&gt; 1 Luke Sky…    172    77 blond      fair       blue            19   male  mascu…</span></span>
<span id="cb19-7"><a href="#cb19-7" tabindex="-1"></a><span class="co">#&gt; 2 C-3PO        167    75 &lt;NA&gt;       gold       yellow         112   none  mascu…</span></span>
<span id="cb19-8"><a href="#cb19-8" tabindex="-1"></a><span class="co">#&gt; 3 R2-D2         96    32 &lt;NA&gt;       white, bl… red             33   none  mascu…</span></span>
<span id="cb19-9"><a href="#cb19-9" tabindex="-1"></a><span class="co">#&gt; 4 Darth Va…    202   136 none       white      yellow          41.9 male  mascu…</span></span>
<span id="cb19-10"><a href="#cb19-10" tabindex="-1"></a><span class="co">#&gt; # ℹ 83 more rows</span></span>
<span id="cb19-11"><a href="#cb19-11" tabindex="-1"></a><span class="co">#&gt; # ℹ 5 more variables: homeworld &lt;chr&gt;, species &lt;chr&gt;, films &lt;list&gt;,</span></span>
<span id="cb19-12"><a href="#cb19-12" tabindex="-1"></a><span class="co">#&gt; #   vehicles &lt;list&gt;, starships &lt;list&gt;</span></span></code></pre></div>
<ul>
<li><code>if_all()</code> keeps the rows where the predicate is true for
<em>all</em> selected columns:</li>
</ul>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a>starwars <span class="sc">%&gt;%</span> </span>
<span id="cb20-2"><a href="#cb20-2" tabindex="-1"></a>  <span class="fu">filter</span>(<span class="fu">if_all</span>(<span class="fu">everything</span>(), <span class="sc">~</span> <span class="sc">!</span><span class="fu">is.na</span>(.x)))</span>
<span id="cb20-3"><a href="#cb20-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 29 × 14</span></span>
<span id="cb20-4"><a href="#cb20-4" tabindex="-1"></a><span class="co">#&gt;   name      height  mass hair_color skin_color eye_color birth_year sex   gender</span></span>
<span id="cb20-5"><a href="#cb20-5" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt;      &lt;int&gt; &lt;dbl&gt; &lt;chr&gt;      &lt;chr&gt;      &lt;chr&gt;          &lt;dbl&gt; &lt;chr&gt; &lt;chr&gt; </span></span>
<span id="cb20-6"><a href="#cb20-6" tabindex="-1"></a><span class="co">#&gt; 1 Luke Sky…    172    77 blond      fair       blue            19   male  mascu…</span></span>
<span id="cb20-7"><a href="#cb20-7" tabindex="-1"></a><span class="co">#&gt; 2 Darth Va…    202   136 none       white      yellow          41.9 male  mascu…</span></span>
<span id="cb20-8"><a href="#cb20-8" tabindex="-1"></a><span class="co">#&gt; 3 Leia Org…    150    49 brown      light      brown           19   fema… femin…</span></span>
<span id="cb20-9"><a href="#cb20-9" tabindex="-1"></a><span class="co">#&gt; 4 Owen Lars    178   120 brown, gr… light      blue            52   male  mascu…</span></span>
<span id="cb20-10"><a href="#cb20-10" tabindex="-1"></a><span class="co">#&gt; # ℹ 25 more rows</span></span>
<span id="cb20-11"><a href="#cb20-11" tabindex="-1"></a><span class="co">#&gt; # ℹ 5 more variables: homeworld &lt;chr&gt;, species &lt;chr&gt;, films &lt;list&gt;,</span></span>
<span id="cb20-12"><a href="#cb20-12" tabindex="-1"></a><span class="co">#&gt; #   vehicles &lt;list&gt;, starships &lt;list&gt;</span></span></code></pre></div>
</div>
</div>
<div id="if-_at-_all" class="section level2">
<h2><code>_if</code>, <code>_at</code>, <code>_all</code></h2>
<p>Prior versions of dplyr allowed you to apply a function to multiple
columns in a different way: using functions with <code>_if</code>,
<code>_at</code>, and <code>_all()</code> suffixes. These functions
solved a pressing need and are used by many people, but are now
superseded. That means that they’ll stay around, but won’t receive any
new features and will only get critical bug fixes.</p>
<div id="why-do-we-like-across" class="section level3">
<h3>Why do we like <code>across()</code>?</h3>
<p>Why did we decide to move away from these functions in favour of
<code>across()</code>?</p>
<ol style="list-style-type: decimal">
<li><p><code>across()</code> makes it possible to express useful
summaries that were previously impossible:</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" tabindex="-1"></a>df <span class="sc">%&gt;%</span></span>
<span id="cb21-2"><a href="#cb21-2" tabindex="-1"></a>  <span class="fu">group_by</span>(g1, g2) <span class="sc">%&gt;%</span> </span>
<span id="cb21-3"><a href="#cb21-3" tabindex="-1"></a>  <span class="fu">summarise</span>(</span>
<span id="cb21-4"><a href="#cb21-4" tabindex="-1"></a>    <span class="fu">across</span>(<span class="fu">where</span>(is.numeric), mean), </span>
<span id="cb21-5"><a href="#cb21-5" tabindex="-1"></a>    <span class="fu">across</span>(<span class="fu">where</span>(is.factor), nlevels),</span>
<span id="cb21-6"><a href="#cb21-6" tabindex="-1"></a>    <span class="at">n =</span> <span class="fu">n</span>(), </span>
<span id="cb21-7"><a href="#cb21-7" tabindex="-1"></a>  )</span></code></pre></div></li>
<li><p><code>across()</code> reduces the number of functions that dplyr
needs to provide. This makes dplyr easier for you to use (because there
are fewer functions to remember) and easier for us to implement new
verbs (since we only need to implement one function, not four).</p></li>
<li><p><code>across()</code> unifies <code>_if</code> and
<code>_at</code> semantics so that you can select by position, name, and
type, and you can now create compound selections that were previously
impossible. For example, you can now transform all numeric columns whose
name begins with “x”:
<code>across(where(is.numeric) &amp; starts_with(&quot;x&quot;))</code>.</p></li>
<li><p><code>across()</code> doesn’t need to use <code>vars()</code>.
The <code>_at()</code> functions are the only place in dplyr where you
have to manually quote variable names, which makes them a little weird
and hence harder to remember.</p></li>
</ol>
</div>
<div id="why-did-it-take-so-long-to-discover-across" class="section level3">
<h3>Why did it take so long to discover <code>across()</code>?</h3>
<p>It’s disappointing that we didn’t discover <code>across()</code>
earlier, and instead worked through several false starts (first not
realising that it was a common problem, then with the
<code>_each()</code> functions, and most recently with the
<code>_if()</code>/<code>_at()</code>/<code>_all()</code> functions).
But <code>across()</code> couldn’t work without three recent
discoveries:</p>
<ul>
<li><p>You can have a column of a data frame that is itself a data
frame. This is something provided by base R, but it’s not very well
documented, and it took a while to see that it was useful, not just a
theoretical curiosity.</p></li>
<li><p>We can use data frames to allow summary functions to return
multiple columns.</p></li>
<li><p>We can use the absence of an outer name as a convention that you
want to unpack a data frame column into individual columns.</p></li>
</ul>
</div>
<div id="how-do-you-convert-existing-code" class="section level3">
<h3>How do you convert existing code?</h3>
<p>Fortunately, it’s generally straightforward to translate your
existing code to use <code>across()</code>:</p>
<ul>
<li><p>Strip the <code>_if()</code>, <code>_at()</code> and
<code>_all()</code> suffix off the function.</p></li>
<li><p>Call <code>across()</code>. The first argument will be:</p>
<ol style="list-style-type: decimal">
<li>For <code>_if()</code>, the old second argument wrapped in
<code>where()</code>.</li>
<li>For <code>_at()</code>, the old second argument, with the call to
<code>vars()</code> removed.</li>
<li>For <code>_all()</code>, <code>everything()</code>.</li>
</ol>
<p>The subsequent arguments can be copied as is.</p></li>
</ul>
<p>For example:</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate_if</span>(is.numeric, <span class="sc">~</span><span class="fu">mean</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>))</span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a><span class="co"># -&gt;</span></span>
<span id="cb22-3"><a href="#cb22-3" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span><span class="fu">mean</span>(.x, <span class="at">na.rm =</span> <span class="cn">TRUE</span>)))</span>
<span id="cb22-4"><a href="#cb22-4" tabindex="-1"></a></span>
<span id="cb22-5"><a href="#cb22-5" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate_at</span>(<span class="fu">vars</span>(<span class="fu">c</span>(x, <span class="fu">starts_with</span>(<span class="st">&quot;y&quot;</span>))), mean)</span>
<span id="cb22-6"><a href="#cb22-6" tabindex="-1"></a><span class="co"># -&gt;</span></span>
<span id="cb22-7"><a href="#cb22-7" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">c</span>(x, <span class="fu">starts_with</span>(<span class="st">&quot;y&quot;</span>)), mean))</span>
<span id="cb22-8"><a href="#cb22-8" tabindex="-1"></a></span>
<span id="cb22-9"><a href="#cb22-9" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate_all</span>(mean)</span>
<span id="cb22-10"><a href="#cb22-10" tabindex="-1"></a><span class="co"># -&gt;</span></span>
<span id="cb22-11"><a href="#cb22-11" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">everything</span>(), mean))</span></code></pre></div>
<p>There are a few exceptions to this rule:</p>
<ul>
<li><p><code>rename_*()</code> and <code>select_*()</code> follow a
different pattern. They already have select semantics, so are generally
used in a different way that doesn’t have a direct equivalent with
<code>across()</code>; use the new <code>rename_with()</code>
instead.</p></li>
<li><p>Previously, <code>filter_*()</code> were paired with the
<code>all_vars()</code> and <code>any_vars()</code> helpers. The new
helpers <code>if_any()</code> and <code>if_all()</code> can be used
inside <code>filter()</code> to keep rows for which the predicate is
true for at least one, or all selected columns:</p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="fu">c</span>(<span class="st">&quot;a&quot;</span>, <span class="st">&quot;b&quot;</span>), <span class="at">y =</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>), <span class="at">z =</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">1</span>, <span class="dv">1</span>))</span>
<span id="cb23-2"><a href="#cb23-2" tabindex="-1"></a></span>
<span id="cb23-3"><a href="#cb23-3" tabindex="-1"></a><span class="co"># Find all rows where EVERY numeric variable is greater than zero</span></span>
<span id="cb23-4"><a href="#cb23-4" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">filter</span>(<span class="fu">if_all</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span> .x <span class="sc">&gt;</span> <span class="dv">0</span>))</span>
<span id="cb23-5"><a href="#cb23-5" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 3</span></span>
<span id="cb23-6"><a href="#cb23-6" tabindex="-1"></a><span class="co">#&gt;   x         y     z</span></span>
<span id="cb23-7"><a href="#cb23-7" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb23-8"><a href="#cb23-8" tabindex="-1"></a><span class="co">#&gt; 1 b         1     1</span></span>
<span id="cb23-9"><a href="#cb23-9" tabindex="-1"></a></span>
<span id="cb23-10"><a href="#cb23-10" tabindex="-1"></a><span class="co"># Find all rows where ANY numeric variable is greater than zero</span></span>
<span id="cb23-11"><a href="#cb23-11" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">filter</span>(<span class="fu">if_any</span>(<span class="fu">where</span>(is.numeric), <span class="sc">~</span> .x <span class="sc">&gt;</span> <span class="dv">0</span>))</span>
<span id="cb23-12"><a href="#cb23-12" tabindex="-1"></a><span class="co">#&gt; # A tibble: 2 × 3</span></span>
<span id="cb23-13"><a href="#cb23-13" tabindex="-1"></a><span class="co">#&gt;   x         y     z</span></span>
<span id="cb23-14"><a href="#cb23-14" tabindex="-1"></a><span class="co">#&gt;   &lt;chr&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb23-15"><a href="#cb23-15" tabindex="-1"></a><span class="co">#&gt; 1 a         1    -1</span></span>
<span id="cb23-16"><a href="#cb23-16" tabindex="-1"></a><span class="co">#&gt; 2 b         1     1</span></span></code></pre></div></li>
<li><p>When used in a <code>mutate()</code>, all transformations
performed by an <code>across()</code> are applied at once. This is
different to the behaviour of <code>mutate_if()</code>,
<code>mutate_at()</code>, and <code>mutate_all()</code>, which apply the
transformations one at a time. We expect that you’ll generally find the
new behaviour less surprising:</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" tabindex="-1"></a>df <span class="ot">&lt;-</span> <span class="fu">tibble</span>(<span class="at">x =</span> <span class="dv">2</span>, <span class="at">y =</span> <span class="dv">4</span>, <span class="at">z =</span> <span class="dv">8</span>)</span>
<span id="cb24-2"><a href="#cb24-2" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate_all</span>(<span class="sc">~</span> .x <span class="sc">/</span> y)</span>
<span id="cb24-3"><a href="#cb24-3" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 3</span></span>
<span id="cb24-4"><a href="#cb24-4" tabindex="-1"></a><span class="co">#&gt;       x     y     z</span></span>
<span id="cb24-5"><a href="#cb24-5" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb24-6"><a href="#cb24-6" tabindex="-1"></a><span class="co">#&gt; 1   0.5     1     8</span></span>
<span id="cb24-7"><a href="#cb24-7" tabindex="-1"></a></span>
<span id="cb24-8"><a href="#cb24-8" tabindex="-1"></a>df <span class="sc">%&gt;%</span> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">everything</span>(), <span class="sc">~</span> .x <span class="sc">/</span> y))</span>
<span id="cb24-9"><a href="#cb24-9" tabindex="-1"></a><span class="co">#&gt; # A tibble: 1 × 3</span></span>
<span id="cb24-10"><a href="#cb24-10" tabindex="-1"></a><span class="co">#&gt;       x     y     z</span></span>
<span id="cb24-11"><a href="#cb24-11" tabindex="-1"></a><span class="co">#&gt;   &lt;dbl&gt; &lt;dbl&gt; &lt;dbl&gt;</span></span>
<span id="cb24-12"><a href="#cb24-12" tabindex="-1"></a><span class="co">#&gt; 1   0.5     1     2</span></span></code></pre></div></li>
</ul>
</div>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>