1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Window functions</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Window functions</h1>
<p>A <strong>window function</strong> is a variation on an aggregation
function. Where an aggregation function, like <code>sum()</code> and
<code>mean()</code>, takes n inputs and return a single value, a window
function returns n values. The output of a window function depends on
all its input values, so window functions don’t include functions that
work element-wise, like <code>+</code> or <code>round()</code>. Window
functions include variations on aggregate functions, like
<code>cumsum()</code> and <code>cummean()</code>, functions for ranking
and ordering, like <code>rank()</code>, and functions for taking
offsets, like <code>lead()</code> and <code>lag()</code>.</p>
<p>In this vignette, we’ll use a small sample of the Lahman batting
dataset, including the players that have won an award.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(Lahman)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a></span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a>batting <span class="ot"><-</span> Lahman<span class="sc">::</span>Batting <span class="sc">%>%</span></span>
<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a> <span class="fu">as_tibble</span>() <span class="sc">%>%</span></span>
<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a> <span class="fu">select</span>(playerID, yearID, teamID, G, AB<span class="sc">:</span>H) <span class="sc">%>%</span></span>
<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a> <span class="fu">arrange</span>(playerID, yearID, teamID) <span class="sc">%>%</span></span>
<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a> <span class="fu">semi_join</span>(Lahman<span class="sc">::</span>AwardsPlayers, <span class="at">by =</span> <span class="st">"playerID"</span>)</span>
<span id="cb1-8"><a href="#cb1-8" tabindex="-1"></a></span>
<span id="cb1-9"><a href="#cb1-9" tabindex="-1"></a>players <span class="ot"><-</span> batting <span class="sc">%>%</span> <span class="fu">group_by</span>(playerID)</span></code></pre></div>
<p>Window functions are used in conjunction with <code>mutate()</code>
and <code>filter()</code> to solve a wide range of problems. Here’s a
selection:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="co"># For each player, find the two years with most hits</span></span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a><span class="fu">filter</span>(players, <span class="fu">min_rank</span>(<span class="fu">desc</span>(H)) <span class="sc"><=</span> <span class="dv">2</span> <span class="sc">&</span> H <span class="sc">></span> <span class="dv">0</span>)</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="co"># Within each player, rank each year by the number of games played</span></span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a><span class="fu">mutate</span>(players, <span class="at">G_rank =</span> <span class="fu">min_rank</span>(G))</span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a></span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co"># For each player, find every year that was better than the previous year</span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="fu">filter</span>(players, G <span class="sc">></span> <span class="fu">lag</span>(G))</span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co"># For each player, compute avg change in games played per year</span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="fu">mutate</span>(players, <span class="at">G_change =</span> (G <span class="sc">-</span> <span class="fu">lag</span>(G)) <span class="sc">/</span> (yearID <span class="sc">-</span> <span class="fu">lag</span>(yearID)))</span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co"># For each player, find all years where they played more games than they did on average</span></span>
<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a><span class="fu">filter</span>(players, G <span class="sc">></span> <span class="fu">mean</span>(G))</span>
<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a><span class="co"># For each, player compute a z score based on number of games played</span></span>
<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a><span class="fu">mutate</span>(players, <span class="at">G_z =</span> (G <span class="sc">-</span> <span class="fu">mean</span>(G)) <span class="sc">/</span> <span class="fu">sd</span>(G))</span></code></pre></div>
<p>Before reading this vignette, you should be familiar with
<code>mutate()</code> and <code>filter()</code>.</p>
<div id="types-of-window-functions" class="section level2">
<h2>Types of window functions</h2>
<p>There are five main families of window functions. Two families are
unrelated to aggregation functions:</p>
<ul>
<li><p>Ranking and ordering functions: <code>row_number()</code>,
<code>min_rank()</code>, <code>dense_rank()</code>,
<code>cume_dist()</code>, <code>percent_rank()</code>, and
<code>ntile()</code>. These functions all take a vector to order by, and
return various types of ranks.</p></li>
<li><p>Offsets <code>lead()</code> and <code>lag()</code> allow you to
access the previous and next values in a vector, making it easy to
compute differences and trends.</p></li>
</ul>
<p>The other three families are variations on familiar aggregate
functions:</p>
<ul>
<li><p>Cumulative aggregates: <code>cumsum()</code>,
<code>cummin()</code>, <code>cummax()</code> (from base R), and
<code>cumall()</code>, <code>cumany()</code>, and <code>cummean()</code>
(from dplyr).</p></li>
<li><p>Rolling aggregates operate in a fixed width window. You won’t
find them in base R or in dplyr, but there are many implementations in
other packages, such as <a href="https://cran.r-project.org/package=RcppRoll">RcppRoll</a>.</p></li>
<li><p>Recycled aggregates, where an aggregate is repeated to match the
length of the input. These are not needed in R because vector recycling
automatically recycles aggregates where needed. They are important in
SQL, because the presence of an aggregation function usually tells the
database to return only one row per group.</p></li>
</ul>
<p>Each family is described in more detail below, focussing on the
general goals and how to use them with dplyr. For more details, refer to
the individual function documentation.</p>
</div>
<div id="ranking-functions" class="section level2">
<h2>Ranking functions</h2>
<p>The ranking functions are variations on a theme, differing in how
they handle ties:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a>x <span class="ot"><-</span> <span class="fu">c</span>(<span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">2</span>, <span class="dv">2</span>, <span class="dv">2</span>)</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a></span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="fu">row_number</span>(x)</span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="co">#> [1] 1 2 3 4 5</span></span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="fu">min_rank</span>(x)</span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="co">#> [1] 1 1 3 3 3</span></span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a><span class="fu">dense_rank</span>(x)</span>
<span id="cb3-8"><a href="#cb3-8" tabindex="-1"></a><span class="co">#> [1] 1 1 2 2 2</span></span></code></pre></div>
<p>If you’re familiar with R, you may recognise that
<code>row_number()</code> and <code>min_rank()</code> can be computed
with the base <code>rank()</code> function and various values of the
<code>ties.method</code> argument. These functions are provided to save
a little typing, and to make it easier to convert between R and SQL.</p>
<p>Two other ranking functions return numbers between 0 and 1.
<code>percent_rank()</code> gives the percentage of the rank;
<code>cume_dist()</code> gives the proportion of values less than or
equal to the current value.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">cume_dist</span>(x)</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="co">#> [1] 0.4 0.4 1.0 1.0 1.0</span></span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="fu">percent_rank</span>(x)</span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a><span class="co">#> [1] 0.0 0.0 0.5 0.5 0.5</span></span></code></pre></div>
<p>These are useful if you want to select (for example) the top 10% of
records within each group. For example:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">filter</span>(players, <span class="fu">cume_dist</span>(<span class="fu">desc</span>(G)) <span class="sc"><</span> <span class="fl">0.1</span>)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co">#> # A tibble: 1,090 × 7</span></span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co">#> # Groups: playerID [995]</span></span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co">#> playerID yearID teamID G AB R H</span></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#> <chr> <int> <fct> <int> <int> <int> <int></span></span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#> 1 aaronha01 1963 ML1 161 631 121 201</span></span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a><span class="co">#> 2 aaronha01 1968 ATL 160 606 84 174</span></span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="co">#> 3 abbotji01 1991 CAL 34 0 0 0</span></span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a><span class="co">#> 4 abernte02 1965 CHN 84 18 1 3</span></span>
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a><span class="co">#> # ℹ 1,086 more rows</span></span></code></pre></div>
<p>Finally, <code>ntile()</code> divides the data up into <code>n</code>
evenly sized buckets. It’s a coarse ranking, and it can be used in with
<code>mutate()</code> to divide the data into buckets for further
summary. For example, we could use <code>ntile()</code> to divide the
players within a team into four ranked groups, and calculate the average
number of games within each group.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>by_team_player <span class="ot"><-</span> <span class="fu">group_by</span>(batting, teamID, playerID)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a>by_team <span class="ot"><-</span> <span class="fu">summarise</span>(by_team_player, <span class="at">G =</span> <span class="fu">sum</span>(G))</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> `summarise()` has grouped output by 'teamID'. You can override using the</span></span>
<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="co">#> `.groups` argument.</span></span>
<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>by_team_quartile <span class="ot"><-</span> <span class="fu">group_by</span>(by_team, <span class="at">quartile =</span> <span class="fu">ntile</span>(G, <span class="dv">4</span>))</span>
<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="fu">summarise</span>(by_team_quartile, <span class="fu">mean</span>(G))</span>
<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#> # A tibble: 4 × 2</span></span>
<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#> quartile `mean(G)`</span></span>
<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#> <int> <dbl></span></span>
<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#> 1 1 22.7</span></span>
<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#> 2 2 91.8</span></span>
<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#> 3 3 253. </span></span>
<span id="cb6-13"><a href="#cb6-13" tabindex="-1"></a><span class="co">#> 4 4 961.</span></span></code></pre></div>
<p>All ranking functions rank from lowest to highest so that small input
values get small ranks. Use <code>desc()</code> to rank from highest to
lowest.</p>
</div>
<div id="lead-and-lag" class="section level2">
<h2>Lead and lag</h2>
<p><code>lead()</code> and <code>lag()</code> produce offset versions of
a input vector that is either ahead of or behind the original
vector.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>x <span class="ot"><-</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">5</span></span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="fu">lead</span>(x)</span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> [1] 2 3 4 5 NA</span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="fu">lag</span>(x)</span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> [1] NA 1 2 3 4</span></span></code></pre></div>
<p>You can use them to:</p>
<ul>
<li><p>Compute differences or percent changes.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="co"># Compute the relative change in games played</span></span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="fu">mutate</span>(players, <span class="at">G_delta =</span> G <span class="sc">-</span> <span class="fu">lag</span>(G))</span></code></pre></div>
<p>Using <code>lag()</code> is more convenient than <code>diff()</code>
because for <code>n</code> inputs <code>diff()</code> returns
<code>n - 1</code> outputs.</p></li>
<li><p>Find out when a value changes.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="co"># Find when a player changed teams</span></span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a><span class="fu">filter</span>(players, teamID <span class="sc">!=</span> <span class="fu">lag</span>(teamID))</span></code></pre></div></li>
</ul>
<p><code>lead()</code> and <code>lag()</code> have an optional argument
<code>order_by</code>. If set, instead of using the row order to
determine which value comes before another, they will use another
variable. This is important if you have not already sorted the data, or
you want to sort one way and lag another.</p>
<p>Here’s a simple example of what happens if you don’t specify
<code>order_by</code> when you need it:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>df <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="at">year =</span> <span class="dv">2000</span><span class="sc">:</span><span class="dv">2005</span>, <span class="at">value =</span> (<span class="dv">0</span><span class="sc">:</span><span class="dv">5</span>) <span class="sc">^</span> <span class="dv">2</span>)</span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>scrambled <span class="ot"><-</span> df[<span class="fu">sample</span>(<span class="fu">nrow</span>(df)), ]</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a></span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a>wrong <span class="ot"><-</span> <span class="fu">mutate</span>(scrambled, <span class="at">prev_value =</span> <span class="fu">lag</span>(value))</span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a><span class="fu">arrange</span>(wrong, year)</span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a><span class="co">#> year value prev_value</span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="co">#> 1 2000 0 4</span></span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a><span class="co">#> 2 2001 1 0</span></span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a><span class="co">#> 3 2002 4 9</span></span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a><span class="co">#> 4 2003 9 16</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a><span class="co">#> 5 2004 16 NA</span></span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a><span class="co">#> 6 2005 25 1</span></span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a></span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a>right <span class="ot"><-</span> <span class="fu">mutate</span>(scrambled, <span class="at">prev_value =</span> <span class="fu">lag</span>(value, <span class="at">order_by =</span> year))</span>
<span id="cb10-15"><a href="#cb10-15" tabindex="-1"></a><span class="fu">arrange</span>(right, year)</span>
<span id="cb10-16"><a href="#cb10-16" tabindex="-1"></a><span class="co">#> year value prev_value</span></span>
<span id="cb10-17"><a href="#cb10-17" tabindex="-1"></a><span class="co">#> 1 2000 0 NA</span></span>
<span id="cb10-18"><a href="#cb10-18" tabindex="-1"></a><span class="co">#> 2 2001 1 0</span></span>
<span id="cb10-19"><a href="#cb10-19" tabindex="-1"></a><span class="co">#> 3 2002 4 1</span></span>
<span id="cb10-20"><a href="#cb10-20" tabindex="-1"></a><span class="co">#> 4 2003 9 4</span></span>
<span id="cb10-21"><a href="#cb10-21" tabindex="-1"></a><span class="co">#> 5 2004 16 9</span></span>
<span id="cb10-22"><a href="#cb10-22" tabindex="-1"></a><span class="co">#> 6 2005 25 16</span></span></code></pre></div>
</div>
<div id="cumulative-aggregates" class="section level2">
<h2>Cumulative aggregates</h2>
<p>Base R provides cumulative sum (<code>cumsum()</code>), cumulative
min (<code>cummin()</code>), and cumulative max (<code>cummax()</code>).
(It also provides <code>cumprod()</code> but that is rarely useful).
Other common accumulating functions are <code>cumany()</code> and
<code>cumall()</code>, cumulative versions of <code>||</code> and
<code>&&</code>, and <code>cummean()</code>, a cumulative mean.
These are not included in base R, but efficient versions are provided by
<code>dplyr</code>.</p>
<p><code>cumany()</code> and <code>cumall()</code> are useful for
selecting all rows up to, or all rows after, a condition is true for the
first (or last) time. For example, we can use <code>cumany()</code> to
find all records for a player after they played a year with 150
games:</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a><span class="fu">filter</span>(players, <span class="fu">cumany</span>(G <span class="sc">></span> <span class="dv">150</span>))</span></code></pre></div>
<p>Like lead and lag, you may want to control the order in which the
accumulation occurs. None of the built in functions have an
<code>order_by</code> argument so <code>dplyr</code> provides a helper:
<code>order_by()</code>. You give it the variable you want to order by,
and then the call to the window function:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a>x <span class="ot"><-</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">10</span></span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a>y <span class="ot"><-</span> <span class="dv">10</span><span class="sc">:</span><span class="dv">1</span></span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a><span class="fu">order_by</span>(y, <span class="fu">cumsum</span>(x))</span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a><span class="co">#> [1] 55 54 52 49 45 40 34 27 19 10</span></span></code></pre></div>
<p>This function uses a bit of non-standard evaluation, so I wouldn’t
recommend using it inside another function; use the simpler but less
concise <code>with_order()</code> instead.</p>
</div>
<div id="recycled-aggregates" class="section level2">
<h2>Recycled aggregates</h2>
<p>R’s vector recycling makes it easy to select values that are higher
or lower than a summary. I call this a recycled aggregate because the
value of the aggregate is recycled to be the same length as the original
vector. Recycled aggregates are useful if you want to find all records
greater than the mean or less than the median:</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a><span class="fu">filter</span>(players, G <span class="sc">></span> <span class="fu">mean</span>(G))</span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a><span class="fu">filter</span>(players, G <span class="sc"><</span> <span class="fu">median</span>(G))</span></code></pre></div>
<p>While most SQL databases don’t have an equivalent of
<code>median()</code> or <code>quantile()</code>, when filtering you can
achieve the same effect with <code>ntile()</code>. For example,
<code>x > median(x)</code> is equivalent to
<code>ntile(x, 2) == 2</code>; <code>x > quantile(x, 75)</code> is
equivalent to <code>ntile(x, 100) > 75</code> or
<code>ntile(x, 4) > 3</code>.</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a><span class="fu">filter</span>(players, <span class="fu">ntile</span>(G, <span class="dv">2</span>) <span class="sc">==</span> <span class="dv">2</span>)</span></code></pre></div>
<p>You can also use this idea to select the records with the highest
(<code>x == max(x)</code>) or lowest value (<code>x == min(x)</code>)
for a field, but the ranking functions give you more control over ties,
and allow you to select any number of records.</p>
<p>Recycled aggregates are also useful in conjunction with
<code>mutate()</code>. For example, with the batting data, we could
compute the “career year”, the number of years a player has played since
they entered the league:</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a><span class="fu">mutate</span>(players, <span class="at">career_year =</span> yearID <span class="sc">-</span> <span class="fu">min</span>(yearID) <span class="sc">+</span> <span class="dv">1</span>)</span>
<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a><span class="co">#> # A tibble: 20,874 × 8</span></span>
<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a><span class="co">#> # Groups: playerID [1,436]</span></span>
<span id="cb15-4"><a href="#cb15-4" tabindex="-1"></a><span class="co">#> playerID yearID teamID G AB R H career_year</span></span>
<span id="cb15-5"><a href="#cb15-5" tabindex="-1"></a><span class="co">#> <chr> <int> <fct> <int> <int> <int> <int> <dbl></span></span>
<span id="cb15-6"><a href="#cb15-6" tabindex="-1"></a><span class="co">#> 1 aaronha01 1954 ML1 122 468 58 131 1</span></span>
<span id="cb15-7"><a href="#cb15-7" tabindex="-1"></a><span class="co">#> 2 aaronha01 1955 ML1 153 602 105 189 2</span></span>
<span id="cb15-8"><a href="#cb15-8" tabindex="-1"></a><span class="co">#> 3 aaronha01 1956 ML1 153 609 106 200 3</span></span>
<span id="cb15-9"><a href="#cb15-9" tabindex="-1"></a><span class="co">#> 4 aaronha01 1957 ML1 151 615 118 198 4</span></span>
<span id="cb15-10"><a href="#cb15-10" tabindex="-1"></a><span class="co">#> # ℹ 20,870 more rows</span></span></code></pre></div>
<p>Or, as in the introductory example, we could compute a z-score:</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a><span class="fu">mutate</span>(players, <span class="at">G_z =</span> (G <span class="sc">-</span> <span class="fu">mean</span>(G)) <span class="sc">/</span> <span class="fu">sd</span>(G))</span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a><span class="co">#> # A tibble: 20,874 × 8</span></span>
<span id="cb16-3"><a href="#cb16-3" tabindex="-1"></a><span class="co">#> # Groups: playerID [1,436]</span></span>
<span id="cb16-4"><a href="#cb16-4" tabindex="-1"></a><span class="co">#> playerID yearID teamID G AB R H G_z</span></span>
<span id="cb16-5"><a href="#cb16-5" tabindex="-1"></a><span class="co">#> <chr> <int> <fct> <int> <int> <int> <int> <dbl></span></span>
<span id="cb16-6"><a href="#cb16-6" tabindex="-1"></a><span class="co">#> 1 aaronha01 1954 ML1 122 468 58 131 -1.16 </span></span>
<span id="cb16-7"><a href="#cb16-7" tabindex="-1"></a><span class="co">#> 2 aaronha01 1955 ML1 153 602 105 189 0.519</span></span>
<span id="cb16-8"><a href="#cb16-8" tabindex="-1"></a><span class="co">#> 3 aaronha01 1956 ML1 153 609 106 200 0.519</span></span>
<span id="cb16-9"><a href="#cb16-9" tabindex="-1"></a><span class="co">#> 4 aaronha01 1957 ML1 151 615 118 198 0.411</span></span>
<span id="cb16-10"><a href="#cb16-10" tabindex="-1"></a><span class="co">#> # ℹ 20,870 more rows</span></span></code></pre></div>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|