1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/count-tally.R
\name{count}
\alias{count}
\alias{count.data.frame}
\alias{tally}
\alias{add_count}
\alias{add_tally}
\title{Count the observations in each group}
\usage{
count(x, ..., wt = NULL, sort = FALSE, name = NULL)
\method{count}{data.frame}(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)
)
tally(x, wt = NULL, sort = FALSE, name = NULL)
add_count(x, ..., wt = NULL, sort = FALSE, name = NULL, .drop = deprecated())
add_tally(x, wt = NULL, sort = FALSE, name = NULL)
}
\arguments{
\item{x}{A data frame, data frame extension (e.g. a tibble), or a
lazy data frame (e.g. from dbplyr or dtplyr).}
\item{...}{<\code{\link[rlang:args_data_masking]{data-masking}}> Variables to group
by.}
\item{wt}{<\code{\link[rlang:args_data_masking]{data-masking}}> Frequency weights.
Can be \code{NULL} or a variable:
\itemize{
\item If \code{NULL} (the default), counts the number of rows in each group.
\item If a variable, computes \code{sum(wt)} for each group.
}}
\item{sort}{If \code{TRUE}, will show the largest groups at the top.}
\item{name}{The name of the new column in the output.
If omitted, it will default to \code{n}. If there's already a column called \code{n},
it will use \code{nn}. If there's a column called \code{n} and \code{nn}, it'll use
\code{nnn}, and so on, adding \code{n}s until it gets a new name.}
\item{.drop}{Handling of factor levels that don't appear in the data, passed
on to \code{\link[=group_by]{group_by()}}.
For \code{count()}: if \code{FALSE} will include counts for empty groups (i.e. for
levels of factors that don't exist in the data).
\ifelse{html}{\href{https://lifecycle.r-lib.org/articles/stages.html#deprecated}{\figure{lifecycle-deprecated.svg}{options: alt='[Deprecated]'}}}{\strong{[Deprecated]}} For \code{add_count()}: deprecated since it
can't actually affect the output.}
}
\value{
An object of the same type as \code{.data}. \code{count()} and \code{add_count()}
group transiently, so the output has the same groups as the input.
}
\description{
\code{count()} lets you quickly count the unique values of one or more variables:
\code{df \%>\% count(a, b)} is roughly equivalent to
\code{df \%>\% group_by(a, b) \%>\% summarise(n = n())}.
\code{count()} is paired with \code{tally()}, a lower-level helper that is equivalent
to \code{df \%>\% summarise(n = n())}. Supply \code{wt} to perform weighted counts,
switching the summary from \code{n = n()} to \code{n = sum(wt)}.
\code{add_count()} and \code{add_tally()} are equivalents to \code{count()} and \code{tally()}
but use \code{mutate()} instead of \code{summarise()} so that they add a new column
with group-wise counts.
}
\examples{
# count() is a convenient way to get a sense of the distribution of
# values in a dataset
starwars \%>\% count(species)
starwars \%>\% count(species, sort = TRUE)
starwars \%>\% count(sex, gender, sort = TRUE)
starwars \%>\% count(birth_decade = round(birth_year, -1))
# use the `wt` argument to perform a weighted count. This is useful
# when the data has already been aggregated once
df <- tribble(
~name, ~gender, ~runs,
"Max", "male", 10,
"Sandra", "female", 1,
"Susan", "female", 4
)
# counts rows:
df \%>\% count(gender)
# counts runs:
df \%>\% count(gender, wt = runs)
# When factors are involved, `.drop = FALSE` can be used to retain factor
# levels that don't appear in the data
df2 <- tibble(
id = 1:5,
type = factor(c("a", "c", "a", NA, "a"), levels = c("a", "b", "c"))
)
df2 \%>\% count(type)
df2 \%>\% count(type, .drop = FALSE)
# Or, using `group_by()`:
df2 \%>\% group_by(type, .drop = FALSE) \%>\% count()
# tally() is a lower-level function that assumes you've done the grouping
starwars \%>\% tally()
starwars \%>\% group_by(species) \%>\% tally()
# both count() and tally() have add_ variants that work like
# mutate() instead of summarise
df \%>\% add_count(gender, wt = runs)
df \%>\% add_tally(wt = runs)
}
|