1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/by.R
\name{dplyr_by}
\alias{dplyr_by}
\title{Per-operation grouping with \code{.by}/\code{by}}
\description{
There are two ways to group in dplyr:
\itemize{
\item Persistent grouping with \code{\link[=group_by]{group_by()}}
\item Per-operation grouping with \code{.by}/\code{by}
}
This help page is dedicated to explaining where and why you might want to use the latter.
Depending on the dplyr verb, the per-operation grouping argument may be named \code{.by} or \code{by}.
The \emph{Supported verbs} section below outlines this on a case-by-case basis.
The remainder of this page will refer to \code{.by} for simplicity.
Grouping radically affects the computation of the dplyr verb you use it with, and one of the goals of \code{.by} is to allow you to place that grouping specification alongside the code that actually uses it.
As an added benefit, with \code{.by} you no longer need to remember to \code{\link[=ungroup]{ungroup()}} after \code{\link[=summarise]{summarise()}}, and \code{summarise()} won't ever message you about how it's handling the groups!
This idea comes from \href{https://CRAN.R-project.org/package=data.table}{data.table}, which allows you to specify \code{by} alongside modifications in \code{j}, like: \code{dt[, .(x = mean(x)), by = g]}.
\subsection{Supported verbs}{
\itemize{
\item \code{\link[=mutate]{mutate(.by = )}}
\item \code{\link[=summarise]{summarise(.by = )}}
\item \code{\link[=reframe]{reframe(.by = )}}
\item \code{\link[=filter]{filter(.by = )}}
\item \code{\link[=slice]{slice(.by = )}}
\item \code{\link[=slice_head]{slice_head(by = )}} and \code{\link[=slice_tail]{slice_tail(by = )}}
\item \code{\link[=slice_min]{slice_min(by = )}} and \code{\link[=slice_max]{slice_max(by = )}}
\item \code{\link[=slice_sample]{slice_sample(by = )}}
}
Note that some dplyr verbs use \code{by} while others use \code{.by}.
This is a purely technical difference.
}
\subsection{Differences between \code{.by} and \code{group_by()}}{\tabular{ll}{
\code{.by} \tab \code{group_by()} \cr
Grouping only affects a single verb \tab Grouping is persistent across multiple verbs \cr
Selects variables with \link[=dplyr_tidy_select]{tidy-select} \tab Computes expressions with \link[rlang:args_data_masking]{data-masking} \cr
Summaries use existing order of group keys \tab Summaries sort group keys in ascending order \cr
}
}
\subsection{Using \code{.by}}{
Let's take a look at the two grouping approaches using this \code{expenses} data set, which tracks costs accumulated across various \code{id}s and \code{region}s:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses <- tibble(
id = c(1, 2, 1, 3, 1, 2, 3),
region = c("A", "A", "A", "B", "B", "A", "A"),
cost = c(25, 20, 19, 12, 9, 6, 6)
)
expenses
#> # A tibble: 7 x 3
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 25
#> 2 2 A 20
#> 3 1 A 19
#> 4 3 B 12
#> 5 1 B 9
#> 6 2 A 6
#> 7 3 A 6
}\if{html}{\out{</div>}}
Imagine that you wanted to compute the average cost per region.
You'd probably write something like this:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
group_by(region) \%>\%
summarise(cost = mean(cost))
#> # A tibble: 2 x 2
#> region cost
#> <chr> <dbl>
#> 1 A 15.2
#> 2 B 10.5
}\if{html}{\out{</div>}}
Instead, you can now specify the grouping \emph{inline} within the verb:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
summarise(cost = mean(cost), .by = region)
#> # A tibble: 2 x 2
#> region cost
#> <chr> <dbl>
#> 1 A 15.2
#> 2 B 10.5
}\if{html}{\out{</div>}}
\code{.by} applies to a single operation, meaning that since \code{expenses} was an ungrouped data frame, the result after applying \code{.by} will also always be an ungrouped data frame, regardless of the number of grouping columns.
\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
summarise(cost = mean(cost), .by = c(id, region))
#> # A tibble: 5 x 3
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 22
#> 2 2 A 13
#> 3 3 B 12
#> 4 1 B 9
#> 5 3 A 6
}\if{html}{\out{</div>}}
Compare that with \code{group_by() \%>\% summarise()}, where \code{summarise()} generally peels off 1 layer of grouping by default, typically with a message that it is doing so:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
group_by(id, region) \%>\%
summarise(cost = mean(cost))
#> `summarise()` has grouped output by 'id'. You can override using the `.groups`
#> argument.
#> # A tibble: 5 x 3
#> # Groups: id [3]
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 22
#> 2 1 B 9
#> 3 2 A 13
#> 4 3 A 6
#> 5 3 B 12
}\if{html}{\out{</div>}}
Because \code{.by} grouping applies to a single operation, you don't need to worry about ungrouping, and it never needs to emit a message to remind you what it is doing with the groups.
Note that with \code{.by} we specified multiple columns to group by using the \link[=dplyr_tidy_select]{tidy-select} syntax \code{c(id, region)}.
If you have a character vector of column names you'd like to group by, you can do so with \code{.by = all_of(my_cols)}.
It will group by the columns in the order they were provided.
To prevent surprising results, you can't use \code{.by} on an existing grouped data frame:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
group_by(id) \%>\%
summarise(cost = mean(cost), .by = c(id, region))
#> Error in `summarise()`:
#> ! Can't supply `.by` when `.data` is a grouped data frame.
}\if{html}{\out{</div>}}
So far we've focused on the usage of \code{.by} with \code{summarise()}, but \code{.by} works with a number of other dplyr verbs.
For example, you could append the mean cost per region onto the original data frame as a new column rather than computing a summary:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
mutate(cost_by_region = mean(cost), .by = region)
#> # A tibble: 7 x 4
#> id region cost cost_by_region
#> <dbl> <chr> <dbl> <dbl>
#> 1 1 A 25 15.2
#> 2 2 A 20 15.2
#> 3 1 A 19 15.2
#> 4 3 B 12 10.5
#> 5 1 B 9 10.5
#> 6 2 A 6 15.2
#> 7 3 A 6 15.2
}\if{html}{\out{</div>}}
Or you could slice out the maximum cost per combination of id and region:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{# Note that the argument is named `by` in `slice_max()`
expenses \%>\%
slice_max(cost, n = 1, by = c(id, region))
#> # A tibble: 5 x 3
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 25
#> 2 2 A 20
#> 3 3 B 12
#> 4 1 B 9
#> 5 3 A 6
}\if{html}{\out{</div>}}
}
\subsection{Result ordering}{
When used with \code{.by}, \code{summarise()}, \code{reframe()}, and \code{slice()} all maintain the ordering of the existing data.
This is different from \code{group_by()}, which has always sorted the group keys in ascending order.
\if{html}{\out{<div class="sourceCode r">}}\preformatted{df <- tibble(
month = c("jan", "jan", "feb", "feb", "mar"),
temp = c(20, 25, 18, 20, 40)
)
# Uses ordering by "first appearance" in the original data
df \%>\%
summarise(average_temp = mean(temp), .by = month)
#> # A tibble: 3 x 2
#> month average_temp
#> <chr> <dbl>
#> 1 jan 22.5
#> 2 feb 19
#> 3 mar 40
# Sorts in ascending order
df \%>\%
group_by(month) \%>\%
summarise(average_temp = mean(temp))
#> # A tibble: 3 x 2
#> month average_temp
#> <chr> <dbl>
#> 1 feb 19
#> 2 jan 22.5
#> 3 mar 40
}\if{html}{\out{</div>}}
If you need sorted group keys, we recommend that you explicitly use \code{\link[=arrange]{arrange()}} either before or after the call to \code{summarise()}, \code{reframe()}, or \code{slice()}.
This also gives you full access to all of \code{arrange()}'s features, such as \code{desc()} and the \code{.locale} argument.
}
\subsection{Verbs without \code{.by} support}{
If a dplyr verb doesn't support \code{.by}, then that typically means that the verb isn't inherently affected by grouping.
For example, \code{\link[=pull]{pull()}} and \code{\link[=rename]{rename()}} don't support \code{.by}, because specifying columns to group by would not affect their implementations.
That said, there are a few exceptions to this where sometimes a dplyr verb doesn't support \code{.by}, but \emph{does} have special support for grouped data frames created by \code{\link[=group_by]{group_by()}}.
This is typically because the verbs are required to retain the grouping columns, for example:
\itemize{
\item \code{\link[=select]{select()}} always retains grouping columns, with a message if any aren't specified in the \code{select()} call.
\item \code{\link[=distinct]{distinct()}} and \code{\link[=count]{count()}} place unspecified grouping columns at the front of the data frame before computing their results.
\item \code{\link[=arrange]{arrange()}} has a \code{.by_group} argument to optionally order by grouping columns first.
}
If \code{group_by()} didn't exist, then these verbs would not have special support for grouped data frames.
}
}
|