File: dplyr_by.Rd

package info (click to toggle)
r-cran-dplyr 1.1.4-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,292 kB
  • sloc: cpp: 1,403; sh: 17; makefile: 7
file content (225 lines) | stat: -rw-r--r-- 9,592 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/by.R
\name{dplyr_by}
\alias{dplyr_by}
\title{Per-operation grouping with \code{.by}/\code{by}}
\description{
There are two ways to group in dplyr:
\itemize{
\item Persistent grouping with \code{\link[=group_by]{group_by()}}
\item Per-operation grouping with \code{.by}/\code{by}
}

This help page is dedicated to explaining where and why you might want to use the latter.

Depending on the dplyr verb, the per-operation grouping argument may be named \code{.by} or \code{by}.
The \emph{Supported verbs} section below outlines this on a case-by-case basis.
The remainder of this page will refer to \code{.by} for simplicity.

Grouping radically affects the computation of the dplyr verb you use it with, and one of the goals of \code{.by} is to allow you to place that grouping specification alongside the code that actually uses it.
As an added benefit, with \code{.by} you no longer need to remember to \code{\link[=ungroup]{ungroup()}} after \code{\link[=summarise]{summarise()}}, and \code{summarise()} won't ever message you about how it's handling the groups!

This idea comes from \href{https://CRAN.R-project.org/package=data.table}{data.table}, which allows you to specify \code{by} alongside modifications in \code{j}, like: \code{dt[, .(x = mean(x)), by = g]}.
\subsection{Supported verbs}{
\itemize{
\item \code{\link[=mutate]{mutate(.by = )}}
\item \code{\link[=summarise]{summarise(.by = )}}
\item \code{\link[=reframe]{reframe(.by = )}}
\item \code{\link[=filter]{filter(.by = )}}
\item \code{\link[=slice]{slice(.by = )}}
\item \code{\link[=slice_head]{slice_head(by = )}} and \code{\link[=slice_tail]{slice_tail(by = )}}
\item \code{\link[=slice_min]{slice_min(by = )}} and \code{\link[=slice_max]{slice_max(by = )}}
\item \code{\link[=slice_sample]{slice_sample(by = )}}
}

Note that some dplyr verbs use \code{by} while others use \code{.by}.
This is a purely technical difference.
}

\subsection{Differences between \code{.by} and \code{group_by()}}{\tabular{ll}{
   \code{.by} \tab \code{group_by()} \cr
   Grouping only affects a single verb \tab Grouping is persistent across multiple verbs \cr
   Selects variables with \link[=dplyr_tidy_select]{tidy-select} \tab Computes expressions with \link[rlang:args_data_masking]{data-masking} \cr
   Summaries use existing order of group keys \tab Summaries sort group keys in ascending order \cr
}

}

\subsection{Using \code{.by}}{

Let's take a look at the two grouping approaches using this \code{expenses} data set, which tracks costs accumulated across various \code{id}s and \code{region}s:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses <- tibble(
  id = c(1, 2, 1, 3, 1, 2, 3),
  region = c("A", "A", "A", "B", "B", "A", "A"),
  cost = c(25, 20, 19, 12, 9, 6, 6)
)
expenses
#> # A tibble: 7 x 3
#>      id region  cost
#>   <dbl> <chr>  <dbl>
#> 1     1 A         25
#> 2     2 A         20
#> 3     1 A         19
#> 4     3 B         12
#> 5     1 B          9
#> 6     2 A          6
#> 7     3 A          6
}\if{html}{\out{</div>}}

Imagine that you wanted to compute the average cost per region.
You'd probably write something like this:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
  group_by(region) \%>\%
  summarise(cost = mean(cost))
#> # A tibble: 2 x 2
#>   region  cost
#>   <chr>  <dbl>
#> 1 A       15.2
#> 2 B       10.5
}\if{html}{\out{</div>}}

Instead, you can now specify the grouping \emph{inline} within the verb:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
  summarise(cost = mean(cost), .by = region)
#> # A tibble: 2 x 2
#>   region  cost
#>   <chr>  <dbl>
#> 1 A       15.2
#> 2 B       10.5
}\if{html}{\out{</div>}}

\code{.by} applies to a single operation, meaning that since \code{expenses} was an ungrouped data frame, the result after applying \code{.by} will also always be an ungrouped data frame, regardless of the number of grouping columns.

\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
  summarise(cost = mean(cost), .by = c(id, region))
#> # A tibble: 5 x 3
#>      id region  cost
#>   <dbl> <chr>  <dbl>
#> 1     1 A         22
#> 2     2 A         13
#> 3     3 B         12
#> 4     1 B          9
#> 5     3 A          6
}\if{html}{\out{</div>}}

Compare that with \code{group_by() \%>\% summarise()}, where \code{summarise()} generally peels off 1 layer of grouping by default, typically with a message that it is doing so:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
  group_by(id, region) \%>\%
  summarise(cost = mean(cost))
#> `summarise()` has grouped output by 'id'. You can override using the `.groups`
#> argument.
#> # A tibble: 5 x 3
#> # Groups:   id [3]
#>      id region  cost
#>   <dbl> <chr>  <dbl>
#> 1     1 A         22
#> 2     1 B          9
#> 3     2 A         13
#> 4     3 A          6
#> 5     3 B         12
}\if{html}{\out{</div>}}

Because \code{.by} grouping applies to a single operation, you don't need to worry about ungrouping, and it never needs to emit a message to remind you what it is doing with the groups.

Note that with \code{.by} we specified multiple columns to group by using the \link[=dplyr_tidy_select]{tidy-select} syntax \code{c(id, region)}.
If you have a character vector of column names you'd like to group by, you can do so with \code{.by = all_of(my_cols)}.
It will group by the columns in the order they were provided.

To prevent surprising results, you can't use \code{.by} on an existing grouped data frame:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\% 
  group_by(id) \%>\%
  summarise(cost = mean(cost), .by = c(id, region))
#> Error in `summarise()`:
#> ! Can't supply `.by` when `.data` is a grouped data frame.
}\if{html}{\out{</div>}}

So far we've focused on the usage of \code{.by} with \code{summarise()}, but \code{.by} works with a number of other dplyr verbs.
For example, you could append the mean cost per region onto the original data frame as a new column rather than computing a summary:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{expenses \%>\%
  mutate(cost_by_region = mean(cost), .by = region)
#> # A tibble: 7 x 4
#>      id region  cost cost_by_region
#>   <dbl> <chr>  <dbl>          <dbl>
#> 1     1 A         25           15.2
#> 2     2 A         20           15.2
#> 3     1 A         19           15.2
#> 4     3 B         12           10.5
#> 5     1 B          9           10.5
#> 6     2 A          6           15.2
#> 7     3 A          6           15.2
}\if{html}{\out{</div>}}

Or you could slice out the maximum cost per combination of id and region:

\if{html}{\out{<div class="sourceCode r">}}\preformatted{# Note that the argument is named `by` in `slice_max()`
expenses \%>\%
  slice_max(cost, n = 1, by = c(id, region))
#> # A tibble: 5 x 3
#>      id region  cost
#>   <dbl> <chr>  <dbl>
#> 1     1 A         25
#> 2     2 A         20
#> 3     3 B         12
#> 4     1 B          9
#> 5     3 A          6
}\if{html}{\out{</div>}}
}

\subsection{Result ordering}{

When used with \code{.by}, \code{summarise()}, \code{reframe()}, and \code{slice()} all maintain the ordering of the existing data.
This is different from \code{group_by()}, which has always sorted the group keys in ascending order.

\if{html}{\out{<div class="sourceCode r">}}\preformatted{df <- tibble(
  month = c("jan", "jan", "feb", "feb", "mar"),
  temp = c(20, 25, 18, 20, 40)
)

# Uses ordering by "first appearance" in the original data
df \%>\%
  summarise(average_temp = mean(temp), .by = month)
#> # A tibble: 3 x 2
#>   month average_temp
#>   <chr>        <dbl>
#> 1 jan           22.5
#> 2 feb           19  
#> 3 mar           40

# Sorts in ascending order
df \%>\%
  group_by(month) \%>\%
  summarise(average_temp = mean(temp))
#> # A tibble: 3 x 2
#>   month average_temp
#>   <chr>        <dbl>
#> 1 feb           19  
#> 2 jan           22.5
#> 3 mar           40
}\if{html}{\out{</div>}}

If you need sorted group keys, we recommend that you explicitly use \code{\link[=arrange]{arrange()}} either before or after the call to \code{summarise()}, \code{reframe()}, or \code{slice()}.
This also gives you full access to all of \code{arrange()}'s features, such as \code{desc()} and the \code{.locale} argument.
}

\subsection{Verbs without \code{.by} support}{

If a dplyr verb doesn't support \code{.by}, then that typically means that the verb isn't inherently affected by grouping.
For example, \code{\link[=pull]{pull()}} and \code{\link[=rename]{rename()}} don't support \code{.by}, because specifying columns to group by would not affect their implementations.

That said, there are a few exceptions to this where sometimes a dplyr verb doesn't support \code{.by}, but \emph{does} have special support for grouped data frames created by \code{\link[=group_by]{group_by()}}.
This is typically because the verbs are required to retain the grouping columns, for example:
\itemize{
\item \code{\link[=select]{select()}} always retains grouping columns, with a message if any aren't specified in the \code{select()} call.
\item \code{\link[=distinct]{distinct()}} and \code{\link[=count]{count()}} place unspecified grouping columns at the front of the data frame before computing their results.
\item \code{\link[=arrange]{arrange()}} has a \code{.by_group} argument to optionally order by grouping columns first.
}

If \code{group_by()} didn't exist, then these verbs would not have special support for grouped data frames.
}
}