1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/rows.R
\name{rows}
\alias{rows}
\alias{rows_insert}
\alias{rows_append}
\alias{rows_update}
\alias{rows_patch}
\alias{rows_upsert}
\alias{rows_delete}
\title{Manipulate individual rows}
\usage{
rows_insert(
x,
y,
by = NULL,
...,
conflict = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
rows_append(x, y, ..., copy = FALSE, in_place = FALSE)
rows_update(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
rows_patch(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
rows_upsert(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE)
rows_delete(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE
)
}
\arguments{
\item{x, y}{A pair of data frames or data frame extensions (e.g. a tibble).
\code{y} must have the same columns of \code{x} or a subset.}
\item{by}{An unnamed character vector giving the key columns. The key columns
must exist in both \code{x} and \code{y}. Keys typically uniquely identify each row,
but this is only enforced for the key values of \code{y} when \code{rows_update()},
\code{rows_patch()}, or \code{rows_upsert()} are used.
By default, we use the first column in \code{y}, since the first column is
a reasonable place to put an identifier variable.}
\item{...}{Other parameters passed onto methods.}
\item{conflict}{For \code{rows_insert()}, how should keys in \code{y} that conflict
with keys in \code{x} be handled? A conflict arises if there is a key in \code{y}
that already exists in \code{x}.
One of:
\itemize{
\item \code{"error"}, the default, will error if there are any keys in \code{y} that
conflict with keys in \code{x}.
\item \code{"ignore"} will ignore rows in \code{y} with keys that conflict with keys in
\code{x}.
}}
\item{copy}{If \code{x} and \code{y} are not from the same data source,
and \code{copy} is \code{TRUE}, then \code{y} will be copied into the
same src as \code{x}. This allows you to join tables across srcs, but
it is a potentially expensive operation so you must opt into it.}
\item{in_place}{Should \code{x} be modified in place? This argument is only
relevant for mutable backends (e.g. databases, data.tables).
When \code{TRUE}, a modified version of \code{x} is returned invisibly;
when \code{FALSE}, a new object representing the resulting changes is returned.}
\item{unmatched}{For \code{rows_update()}, \code{rows_patch()}, and \code{rows_delete()},
how should keys in \code{y} that are unmatched by the keys in \code{x} be handled?
One of:
\itemize{
\item \code{"error"}, the default, will error if there are any keys in \code{y} that
are unmatched by the keys in \code{x}.
\item \code{"ignore"} will ignore rows in \code{y} with keys that are unmatched by the
keys in \code{x}.
}}
}
\value{
An object of the same type as \code{x}. The order of the rows and columns of \code{x}
is preserved as much as possible. The output has the following properties:
\itemize{
\item \code{rows_update()} and \code{rows_patch()} preserve the number of rows;
\code{rows_insert()}, \code{rows_append()}, and \code{rows_upsert()} return all existing
rows and potentially new rows; \code{rows_delete()} returns a subset of the
rows.
\item Columns are not added, removed, or relocated, though the data may be
updated.
\item Groups are taken from \code{x}.
\item Data frame attributes are taken from \code{x}.
}
If \code{in_place = TRUE}, the result will be returned invisibly.
}
\description{
These functions provide a framework for modifying rows in a table using a
second table of data. The two tables are matched \code{by} a set of key variables
whose values typically uniquely identify each row. The functions are inspired
by SQL's \code{INSERT}, \code{UPDATE}, and \code{DELETE}, and can optionally modify
\code{in_place} for selected backends.
\itemize{
\item \code{rows_insert()} adds new rows (like \code{INSERT}). By default, key values in
\code{y} must not exist in \code{x}.
\item \code{rows_append()} works like \code{rows_insert()} but ignores keys.
\item \code{rows_update()} modifies existing rows (like \code{UPDATE}). Key values in \code{y}
must be unique, and, by default, key values in \code{y} must exist in \code{x}.
\item \code{rows_patch()} works like \code{rows_update()} but only overwrites \code{NA} values.
\item \code{rows_upsert()} inserts or updates depending on whether or not the
key value in \code{y} already exists in \code{x}. Key values in \code{y} must be unique.
\item \code{rows_delete()} deletes rows (like \code{DELETE}). By default, key values in \code{y}
must exist in \code{x}.
}
}
\section{Methods}{
These function are \strong{generic}s, which means that packages can provide
implementations (methods) for other classes. See the documentation of
individual methods for extra arguments and differences in behaviour.
Methods available in currently loaded packages:
\itemize{
\item \code{rows_insert()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_insert")}.
\item \code{rows_append()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_append")}.
\item \code{rows_update()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_update")}.
\item \code{rows_patch()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_patch")}.
\item \code{rows_upsert()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_upsert")}.
\item \code{rows_delete()}: \Sexpr[stage=render,results=rd]{dplyr:::methods_rd("rows_delete")}.
}
}
\examples{
data <- tibble(a = 1:3, b = letters[c(1:2, NA)], c = 0.5 + 0:2)
data
# Insert
rows_insert(data, tibble(a = 4, b = "z"))
# By default, if a key in `y` matches a key in `x`, then it can't be inserted
# and will throw an error. Alternatively, you can ignore rows in `y`
# containing keys that conflict with keys in `x` with `conflict = "ignore"`,
# or you can use `rows_append()` to ignore keys entirely.
try(rows_insert(data, tibble(a = 3, b = "z")))
rows_insert(data, tibble(a = 3, b = "z"), conflict = "ignore")
rows_append(data, tibble(a = 3, b = "z"))
# Update
rows_update(data, tibble(a = 2:3, b = "z"))
rows_update(data, tibble(b = "z", a = 2:3), by = "a")
# Variants: patch and upsert
rows_patch(data, tibble(a = 2:3, b = "z"))
rows_upsert(data, tibble(a = 2:4, b = "z"))
# Delete and truncate
rows_delete(data, tibble(a = 2:3))
rows_delete(data, tibble(a = 2:3, b = "b"))
# By default, for update, patch, and delete it is an error if a key in `y`
# doesn't exist in `x`. You can ignore rows in `y` that have unmatched keys
# with `unmatched = "ignore"`.
y <- tibble(a = 3:4, b = "z")
try(rows_update(data, y, by = "a"))
rows_update(data, y, by = "a", unmatched = "ignore")
rows_patch(data, y, by = "a", unmatched = "ignore")
rows_delete(data, y, by = "a", unmatched = "ignore")
}
|