1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/select.R
\name{select}
\alias{select}
\title{Keep or drop columns using their names and types}
\usage{
select(.data, ...)
}
\arguments{
\item{.data}{A data frame, data frame extension (e.g. a tibble), or a
lazy data frame (e.g. from dbplyr or dtplyr). See \emph{Methods}, below, for
more details.}
\item{...}{<\code{\link[=dplyr_tidy_select]{tidy-select}}> One or more unquoted
expressions separated by commas. Variable names can be used as if they
were positions in the data frame, so expressions like \code{x:y} can
be used to select a range of variables.}
}
\value{
An object of the same type as \code{.data}. The output has the following
properties:
\itemize{
\item Rows are not affected.
\item Output columns are a subset of input columns, potentially with a different
order. Columns will be renamed if \code{new_name = old_name} form is used.
\item Data frame attributes are preserved.
\item Groups are maintained; you can't select off grouping variables.
}
}
\description{
Select (and optionally rename) variables in a data frame, using a concise
mini-language that makes it easy to refer to variables based on their name
(e.g. \code{a:f} selects all columns from \code{a} on the left to \code{f} on the
right) or type (e.g. \code{where(is.numeric)} selects all numeric columns).
\subsection{Overview of selection features}{
Tidyverse selections implement a dialect of R where operators make
it easy to select variables:
\itemize{
\item \code{:} for selecting a range of consecutive variables.
\item \code{!} for taking the complement of a set of variables.
\item \code{&} and \code{|} for selecting the intersection or the union of two
sets of variables.
\item \code{c()} for combining selections.
}
In addition, you can use \strong{selection helpers}. Some helpers select specific
columns:
\itemize{
\item \code{\link[tidyselect:everything]{everything()}}: Matches all variables.
\item \code{\link[tidyselect:everything]{last_col()}}: Select last variable, possibly with an offset.
\item \code{\link[=group_cols]{group_cols()}}: Select all grouping columns.
}
Other helpers select variables by matching patterns in their names:
\itemize{
\item \code{\link[tidyselect:starts_with]{starts_with()}}: Starts with a prefix.
\item \code{\link[tidyselect:starts_with]{ends_with()}}: Ends with a suffix.
\item \code{\link[tidyselect:starts_with]{contains()}}: Contains a literal string.
\item \code{\link[tidyselect:starts_with]{matches()}}: Matches a regular expression.
\item \code{\link[tidyselect:starts_with]{num_range()}}: Matches a numerical range like x01, x02, x03.
}
Or from variables stored in a character vector:
\itemize{
\item \code{\link[tidyselect:all_of]{all_of()}}: Matches variable names in a character vector. All
names must be present, otherwise an out-of-bounds error is
thrown.
\item \code{\link[tidyselect:all_of]{any_of()}}: Same as \code{all_of()}, except that no error is thrown
for names that don't exist.
}
Or using a predicate function:
\itemize{
\item \code{\link[tidyselect:where]{where()}}: Applies a function to all variables and selects those
for which the function returns \code{TRUE}.
}
}
}
\section{Methods}{
This function is a \strong{generic}, which means that packages can provide
implementations (methods) for other classes. See the documentation of
individual methods for extra arguments and differences in behaviour.
The following methods are currently available in loaded packages:
\Sexpr[stage=render,results=rd]{dplyr:::methods_rd("select")}.
}
\section{Examples}{
Here we show the usage for the basic selection operators. See the
specific help pages to learn about helpers like \code{\link[=starts_with]{starts_with()}}.
The selection language can be used in functions like
\code{dplyr::select()} or \code{tidyr::pivot_longer()}. Let's first attach
the tidyverse:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{library(tidyverse)
# For better printing
iris <- as_tibble(iris)
}\if{html}{\out{</div>}}
Select variables by name:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{starwars \%>\% select(height)
#> # A tibble: 87 x 1
#> height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # i 83 more rows
iris \%>\% pivot_longer(Sepal.Length)
#> # A tibble: 150 x 6
#> Sepal.Width Petal.Length Petal.Width Species name value
#> <dbl> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 1.4 0.2 setosa Sepal.Length 5.1
#> 2 3 1.4 0.2 setosa Sepal.Length 4.9
#> 3 3.2 1.3 0.2 setosa Sepal.Length 4.7
#> 4 3.1 1.5 0.2 setosa Sepal.Length 4.6
#> # i 146 more rows
}\if{html}{\out{</div>}}
Select multiple variables by separating them with commas. Note how
the order of columns is determined by the order of inputs:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{starwars \%>\% select(homeworld, height, mass)
#> # A tibble: 87 x 3
#> homeworld height mass
#> <chr> <int> <dbl>
#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136
#> # i 83 more rows
}\if{html}{\out{</div>}}
Functions like \code{tidyr::pivot_longer()} don't take variables with
dots. In this case use \code{c()} to select multiple variables:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{iris \%>\% pivot_longer(c(Sepal.Length, Petal.Length))
#> # A tibble: 300 x 5
#> Sepal.Width Petal.Width Species name value
#> <dbl> <dbl> <fct> <chr> <dbl>
#> 1 3.5 0.2 setosa Sepal.Length 5.1
#> 2 3.5 0.2 setosa Petal.Length 1.4
#> 3 3 0.2 setosa Sepal.Length 4.9
#> 4 3 0.2 setosa Petal.Length 1.4
#> # i 296 more rows
}\if{html}{\out{</div>}}
\subsection{Operators:}{
The \code{:} operator selects a range of consecutive variables:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{starwars \%>\% select(name:mass)
#> # A tibble: 87 x 3
#> name height mass
#> <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136
#> # i 83 more rows
}\if{html}{\out{</div>}}
The \code{!} operator negates a selection:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{starwars \%>\% select(!(name:mass))
#> # A tibble: 87 x 11
#> hair_color skin_color eye_color birth_year sex gender homeworld species
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human
#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo Droid
#> 4 none white yellow 41.9 male masculine Tatooine Human
#> # i 83 more rows
#> # i 3 more variables: films <list>, vehicles <list>, starships <list>
iris \%>\% select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#> Sepal.Width Petal.Width Species
#> <dbl> <dbl> <fct>
#> 1 3.5 0.2 setosa
#> 2 3 0.2 setosa
#> 3 3.2 0.2 setosa
#> 4 3.1 0.2 setosa
#> # i 146 more rows
iris \%>\% select(!ends_with("Width"))
#> # A tibble: 150 x 3
#> Sepal.Length Petal.Length Species
#> <dbl> <dbl> <fct>
#> 1 5.1 1.4 setosa
#> 2 4.9 1.4 setosa
#> 3 4.7 1.3 setosa
#> 4 4.6 1.5 setosa
#> # i 146 more rows
}\if{html}{\out{</div>}}
\code{&} and \code{|} take the intersection or the union of two selections:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{iris \%>\% select(starts_with("Petal") & ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Width
#> <dbl>
#> 1 0.2
#> 2 0.2
#> 3 0.2
#> 4 0.2
#> # i 146 more rows
iris \%>\% select(starts_with("Petal") | ends_with("Width"))
#> # A tibble: 150 x 3
#> Petal.Length Petal.Width Sepal.Width
#> <dbl> <dbl> <dbl>
#> 1 1.4 0.2 3.5
#> 2 1.4 0.2 3
#> 3 1.3 0.2 3.2
#> 4 1.5 0.2 3.1
#> # i 146 more rows
}\if{html}{\out{</div>}}
To take the difference between two selections, combine the \code{&} and
\code{!} operators:
\if{html}{\out{<div class="sourceCode r">}}\preformatted{iris \%>\% select(starts_with("Petal") & !ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Length
#> <dbl>
#> 1 1.4
#> 2 1.4
#> 3 1.3
#> 4 1.5
#> # i 146 more rows
}\if{html}{\out{</div>}}
}
}
\seealso{
Other single table verbs:
\code{\link{arrange}()},
\code{\link{filter}()},
\code{\link{mutate}()},
\code{\link{reframe}()},
\code{\link{rename}()},
\code{\link{slice}()},
\code{\link{summarise}()}
}
\concept{single table verbs}
|