File: stackedribbongroup.js

package info (click to toggle)
r-cran-dygraphs 1.1.1.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,232 kB
  • sloc: javascript: 10,787; sh: 19; makefile: 15
file content (381 lines) | stat: -rw-r--r-- 12,244 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// the _lineplotter function extracted from dygraphs-combined-dev.js, available for use in conjunction with other per-series plotters and group plotters

function linePlotter(e) {
  //extracting and reducing the Dygraph.stackPoints_ function
  stackPoints = function(points, cumulativeYval, seriesExtremes, fillMethod) {
    var lastXval = null;
    var prevPoint = null;
    var nextPoint = null;
    var nextPointIdx = -1;
  
    // Find the next stackable point starting from the given index.
    var updateNextPoint = function(idx) {
      // If we've previously found a non-NaN point and haven't gone past it yet,
      // just use that.
      if (nextPointIdx >= idx) return;
  
      // We haven't found a non-NaN point yet or have moved past it,
      // look towards the right to find a non-NaN point.
      for (var j = idx; j < points.length; ++j) {
        // Clear out a previously-found point (if any) since it's no longer
        // valid, we shouldn't use it for interpolation anymore.
        nextPoint = null;
        if (!isNaN(points[j].yval) && points[j].yval !== null) {
          nextPointIdx = j;
          nextPoint = points[j];
          break;
        }
      }
    };
  
    for (var i = 0; i < points.length; ++i) {
      var point = points[i];
      var xval = point.xval;
      if (cumulativeYval[xval] === undefined) {
        cumulativeYval[xval] = 0;
      }
  
      var actualYval = point.yval;
      if (isNaN(actualYval) || actualYval === null) {
        if(fillMethod == 'none') {
          actualYval = 0;
        } else {
          // Interpolate/extend for stacking purposes if possible.
          updateNextPoint(i);
          if (prevPoint && nextPoint && fillMethod != 'none') {
            // Use linear interpolation between prevPoint and nextPoint.
            actualYval = prevPoint.yval + (nextPoint.yval - prevPoint.yval) *
                ((xval - prevPoint.xval) / (nextPoint.xval - prevPoint.xval));
          } else if (prevPoint && fillMethod == 'all') {
            actualYval = prevPoint.yval;
          } else if (nextPoint && fillMethod == 'all') {
            actualYval = nextPoint.yval;
          } else {
            actualYval = 0;
          }
        }
      } else {
        prevPoint = point;
      }
  
      var stackedYval = cumulativeYval[xval];
      if (lastXval != xval) {
        // If an x-value is repeated, we ignore the duplicates.
        stackedYval += actualYval;
        cumulativeYval[xval] = stackedYval;
      }
      lastXval = xval;
  
      point.yval_stacked = stackedYval;
      
      if (stackedYval > seriesExtremes[1]) {
        seriesExtremes[1] = stackedYval;
      }
      if (stackedYval < seriesExtremes[0]) {
        seriesExtremes[0] = stackedYval;
      }
  
    }
  };
  
  // BEGIN HEADER BLOCK
  // This first block can be copied to other plotters to capture the group 
  var g = e.dygraph;
  
  var group;
  var groupIdx = [];
  var sets = [];
  var allSets = e.allSeriesPoints;
  var minIdx = Infinity;
  var setName = e.setName;
  var setNames = g.getLabels().slice(1);
  var groupSetNames = [];
  var fillColors = [];
  var strokeColors = g.getColors();
  // this next one we use further down, but will be populated in a decreasing loop,
  // so we'll establish the size in this forward loop so it has the structure to accept
  // later on.
  var seriesExtremes = [];
  
  var currGroup = g.attr_("group", setName);
  
  for (var setIdx = 0; setIdx < allSets.length; setIdx++) {
    // get the name and group of the current setIdx
    setName = setNames[setIdx];
    group = g.attr_("group", setName);

    if (group === currGroup) {
      //save the indv index and the points
      groupIdx.push(setIdx);
      sets.push(allSets[setIdx]);
      groupSetNames.push(setName);
      fillColors.push(strokeColors[setIdx]);
     
      // the aforementioned stuff for later on 
      var tmpExtremes = [];
      tmpExtremes[0] = Infinity;
      tmpExtremes[1] = -Infinity;
      
      seriesExtremes.push(tmpExtremes);
      
      // capturing the min indx helps to ensure we don't render the plotter
      // multiple times
      if (setIdx < minIdx) minIdx = setIdx;
    }
  }
  // END HEADER BLOCK
	
	//Stack the points
  // set up cumulative records
  var cumulativeYval = [];
  var packed = g.gatherDatasets_(g.rolledSeries_, null);
  var extremes = packed.extremes;
  var seriesName;
  
  for (var j = sets.length - 1; j >= 0; j--) {
    points = sets[j];
    seriesName = groupSetNames[j]; 
    
    //  stack the data 
    stackPoints(points, cumulativeYval, seriesExtremes[j],
          g.getBooleanOption("stackedGraphNaNFill"));
    
    extremes[seriesName] = seriesExtremes[j];
  }
  
	// Helper function to trace a line back along the baseline.
  var traceBackPath = function(ctx, baselineX, baselineY, pathBack) {
    ctx.lineTo(baselineX, baselineY);
    for (var i = pathBack.length - 1; i >= 0; i--) {
      var pt = pathBack[i];
      ctx.lineTo(pt[0], pt[1]);
    }
  };
  
	// Do the actual plotting.
				// First, we'll plot the line for this series, then...
				// Second, we'll add the fills
				// In contrast to stackedlinegroup, we do this in reverse
				// order to align with the fillplotter
	var area = e.plotArea;
  var fillAlpha = g.getNumericOption('fillAlpha');
	
	var baseline = {};
  var currBaseline;
  var prevStepPlot;  // for different line drawing modes (line/step) per series

  var ctx = e.drawingContext;
    
	// For filled charts, we draw points from left to right, then back along
  // the x-axis to complete a shape for filling.
  // For stacked plots, this "back path" is a more complex shape. This array
  // stores the [x, y] values needed to trace that shape.
  var pathBack = [];

	//We'll save the group indices of the current set,
				// so as to test later and hopefully skip 
				// past needless iterations of the loops
	var currSetIdx;
	//Now a quick FOR loop to capture the group indices
  for (var j = sets.length - 1; j >= 0; j--) {
    seriesName = groupSetNames[j]; 
		if (seriesName === e.setName) currSetIdx = j;
  }
  
	for (var j = sets.length - 1; j >= 0; j--) {
		// If we're not dealing with the immediate plotted series or it's
					// immediate predecesor, skip all this stuff below
		if (j > (currSetIdx + 1) || j < currSetIdx) continue;

    setName = groupSetNames[j];

		var connectSeparated = g.getOption('connectSeparatedPoints', setName);
    var logscale = g.attributes_.getForSeries("logscale", setName);
    
    axis = g.axisPropertiesForSeries(setName);
    
    points = sets[j];
    
    for (var i = 0; i < points.length; i++) {
      var point = points[i];
      
      var yval = point.yval;
      
      point.y_stacked = DygraphLayout.calcYNormal_(
          axis, point.yval_stacked, logscale);
          
      if (yval !== null && !isNaN(yval)) {
        yval = point.yval_stacked;
      }
      if (yval === null) {
        yval = NaN;
        if (!connectSeparated) {
          point.yval = NaN;
        }
      }
      point.y = DygraphLayout.calcYNormal_(axis, yval, logscale);
    
      point.canvasx = g.plotter_.area.w * point.x + g.plotter_.area.x;
      point.canvasy = g.plotter_.area.h * point.y + g.plotter_.area.y;
		}

		e.points = points;

	  var strokeWidth = e.strokeWidth;
	
	  var borderWidth = g.getNumericOption("strokeBorderWidth", setName);
	  var drawPointCallback = g.getOption("drawPointCallback", setName) ||
	      Dygraph.Circles.DEFAULT;
	  var strokePattern = g.getOption("strokePattern", setName);
	  var drawPoints = g.getBooleanOption("drawPoints", setName);
	  var pointSize = g.getNumericOption("pointSize", setName);
		
		// We'll only draw the line plotter if the current series matches
					// the one in the top-level plotter call
		if (setName === e.setName) {
	  	if (borderWidth && strokeWidth) {
	  	  DygraphCanvasRenderer._drawStyledLine(e,
	  	      g.getOption("strokeBorderColor", setName),
	  	      strokeWidth + 2 * borderWidth,
	  	      strokePattern,
	  	      drawPoints,
	  	      drawPointCallback,
	  	      pointSize
	  	      );
	  	}
	
	  	DygraphCanvasRenderer._drawStyledLine(e,
	  	    e.color,
	  	    strokeWidth,
	  	    strokePattern,
	  	    drawPoints,
	  	    drawPointCallback,
	  	    pointSize
	  	);
		}
		//END OF THE LINE PLOTTER
					//
		//BEGIN THE FILL
    var stepPlot = g.getBooleanOption('stepPlot', setName);
		var color = e.color;
		var axis = g.axisPropertiesForSeries(setName);
    var axisY = 1.0 + axis.minyval * axis.yscale;
    if (axisY < 0.0) axisY = 0.0;
    else if (axisY > 1.0) axisY = 1.0;
    axisY = area.h * axisY + area.y;


		// setup graphics context
  	var prevX = NaN;
  	var prevYs = [-1, -1];
  	var newYs;
  	
		// should be same color as the lines but only 15% opaque.
  	var rgb = Dygraph.toRGB_(color);
  	var err_color =
  	    'rgba(' + rgb.r + ',' + rgb.g + ',' + rgb.b + ',' + fillAlpha + ')';
    

    var iter = Dygraph.createIterator(points, 0, points.length,
        DygraphCanvasRenderer._getIteratorPredicate(
            g.getBooleanOption("connectSeparatedPoints", setName)));

    ctx.fillStyle = err_color;
    ctx.beginPath();
    var last_x, is_first = true;

    // If the point density is high enough, dropping segments on their way to
    // the canvas justifies the overhead of doing so.
    if (points.length > 2 * g.width_ || Dygraph.FORCE_FAST_PROXY) {
      ctx = DygraphCanvasRenderer._fastCanvasProxy(ctx);
    }

    // TODO(danvk): there are a lot of options at play in this loop.
    //     The logic would be much clearer if some (e.g. stackGraph and
    //     stepPlot) were split off into separate sub-plotters.
    var point;

		// Throughout this loop, we test to see if the top-level called series
					// matches the one current in the parent FOR loop.  If not, we skip
					// the parts that draw the line but leave the others so the pathback
					// and prevYs and prevXs still get properly populated
    while (iter.hasNext) {
      point = iter.next();
      if (!Dygraph.isOK(point.y) && !stepPlot) {
				//
        if (e.setName === setName) traceBackPath(
								ctx, prevX, prevYs[1], pathBack);
        pathBack = [];
        prevX = NaN;
        if (point.y_stacked !== null && !isNaN(point.y_stacked)) {
          baseline[point.canvasx] = area.h * point.y_stacked + area.y;
        }
        continue;
      }
      if (!is_first && last_x == point.xval) {
        continue;
      } else {
        is_first = false;
        last_x = point.xval;
      }

      currBaseline = baseline[point.canvasx];
      var lastY;
      if (currBaseline === undefined) {
        lastY = axisY;
      } else {
        if(prevStepPlot) {
          lastY = currBaseline[0];
        } else {
          lastY = currBaseline;
        }
      }
      newYs = [ point.canvasy, lastY ];

      if (stepPlot) {
        // Step plots must keep track of the top and bottom of
        // the baseline at each point.
        if (prevYs[0] === -1) {
          baseline[point.canvasx] = [ point.canvasy, axisY ];
        } else {
          baseline[point.canvasx] = [ point.canvasy, prevYs[0] ];
        }
      } else {
        baseline[point.canvasx] = point.canvasy;
      }

      if (!isNaN(prevX)) {
				if (e.setName === setName) {
        	// Move to top fill point
        	if (stepPlot) {
        	  ctx.lineTo(point.canvasx, prevYs[0]);
        	  ctx.lineTo(point.canvasx, newYs[0]);
        	} else {
        	  ctx.lineTo(point.canvasx, newYs[0]);
        	}
        }

        // Record the baseline for the reverse path.
        pathBack.push([prevX, prevYs[1]]);
        if (prevStepPlot && currBaseline) {
          // Draw to the bottom of the baseline
          pathBack.push([point.canvasx, currBaseline[1]]);
        } else {
          pathBack.push([point.canvasx, newYs[1]]);
        }
      } else if (e.setName === setName) {
        ctx.moveTo(point.canvasx, newYs[1]);
        ctx.lineTo(point.canvasx, newYs[0]);
      }
      prevYs = newYs;
      prevX = point.canvasx;
		}
    prevStepPlot = stepPlot;
    if (newYs && point) {
      if (e.setName === setName) traceBackPath(
							ctx, point.canvasx, newYs[1], pathBack);
      pathBack = [];
    }
    ctx.fill();
	}
}