1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
\name{dynlm}
\alias{dynlm}
\alias{print.dynlm}
\alias{summary.dynlm}
\alias{print.summary.dynlm}
\alias{time.dynlm}
\alias{index.dynlm}
\alias{start.dynlm}
\alias{end.dynlm}
\alias{recresid.dynlm}
\title{Dynamic Linear Models and Time Series Regression}
\description{
Interface to \code{\link{lm.wfit}} for fitting dynamic linear models
and time series regression relationships.
}
\usage{dynlm(formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
contrasts = NULL, offset, start = NULL, end = NULL, ...)}
\arguments{
\item{formula}{a \code{"formula"} describing the linear model to be fit.
For details see below and \code{\link{lm}}.}
\item{data}{an optional \code{"data.frame"} or time series object (e.g.,
\code{"ts"} or \code{"zoo"}), containing the variables
in the model. If not found in \code{data}, the variables are taken
from \code{environment(formula)}, typically the environment from which
\code{lm} is called.}
\item{subset}{an optional vector specifying a subset of observations
to be used in the fitting process.}
\item{weights}{an optional vector of weights to be used
in the fitting process. If specified, weighted least squares is used
with weights \code{weights} (that is, minimizing \code{sum(w*e^2)});
otherwise ordinary least squares is used.}
\item{na.action}{a function which indicates what should happen
when the data contain \code{NA}s. The default is set by
the \code{na.action} setting of \code{\link{options}}, and is
\code{\link{na.fail}} if that is unset. The \dQuote{factory-fresh}
default is \code{\link{na.omit}}. Another possible value is
\code{NULL}, no action. Note, that for time series regression
special methods like \code{\link{na.contiguous}}, \code{\link[zoo]{na.locf}}
and \code{\link[zoo]{na.approx}} are available.}
\item{method}{the method to be used; for fitting, currently only
\code{method = "qr"} is supported; \code{method = "model.frame"} returns
the model frame (the same as with \code{model = TRUE}, see below).}
\item{model, x, y, qr}{logicals. If \code{TRUE} the corresponding
components of the fit (the model frame, the model matrix, the
response, the QR decomposition) are returned.}
\item{singular.ok}{logical. If \code{FALSE} (the default in S but
not in \R) a singular fit is an error.}
\item{contrasts}{an optional list. See the \code{contrasts.arg}
of \code{model.matrix.default}.}
\item{offset}{this can be used to specify an \emph{a priori}
known component to be included in the linear predictor
during fitting. An \code{\link{offset}} term can be included in the
formula instead or as well, and if both are specified their sum is used.}
\item{start}{start of the time period which should be used for fitting the model.}
\item{end}{end of the time period which should be used for fitting the model.}
\item{\dots}{additional arguments to be passed to the low level
regression fitting functions.}
}
\details{
The interface and internals of \code{dynlm} are very similar to \code{\link{lm}},
but currently \code{dynlm} offers three advantages over the direct use of
\code{lm}: 1. extended formula processing, 2. preservation of time series
attributes, 3. instrumental variables regression (via two-stage least squares).
For specifying the \code{formula} of the model to be fitted, there are
additional functions available which allow for convenient specification
of dynamics (via \code{d()} and \code{L()}) or linear/cyclical patterns
(via \code{trend()}, \code{season()}, and \code{harmon()}).
All new formula functions require that their arguments are time
series objects (i.e., \code{"ts"} or \code{"zoo"}).
Dynamic models: An example would be \code{d(y) ~ L(y, 2)}, where
\code{d(x, k)} is \code{diff(x, lag = k)} and \code{L(x, k)} is
\code{lag(x, lag = -k)}, note the difference in sign. The default
for \code{k} is in both cases \code{1}. For \code{L()}, it
can also be vector-valued, e.g., \code{y ~ L(y, 1:4)}.
Trends: \code{y ~ trend(y)} specifies a linear time trend where
\code{(1:n)/freq} is used by default as the regressor. \code{n} is the
number of observations and \code{freq} is the frequency of the series
(if any, otherwise \code{freq = 1}). Alternatively, \code{trend(y, scale = FALSE)}
would employ \code{1:n} and \code{time(y)} would employ the original time index.
Seasonal/cyclical patterns: Seasonal patterns can be specified
via \code{season(x, ref = NULL)} and harmonic patterns via
\code{harmon(x, order = 1)}.
\code{season(x, ref = NULL)} creates a factor with levels for each cycle of the season. Using
the \code{ref} argument, the reference level can be changed from the default
first level to any other. \code{harmon(x, order = 1)} creates a matrix of
regressors corresponding to \code{cos(2 * o * pi * time(x))} and
\code{sin(2 * o * pi * time(x))} where \code{o} is chosen from \code{1:order}.
See below for examples and \code{\link{M1Germany}} for a more elaborate application.
Furthermore, a nuisance when working with \code{lm} is that it offers only limited
support for time series data, hence a major aim of \code{dynlm} is to preserve
time series properties of the data. Explicit support is currently available
for \code{"ts"} and \code{"zoo"} series. Internally, the data is kept as a \code{"zoo"}
series and coerced back to \code{"ts"} if the original dependent variable was of
that class (and no internal \code{NA}s were created by the \code{na.action}).
To specify a set of instruments, formulas of type \code{y ~ x1 + x2 | z1 + z2}
can be used where \code{z1} and \code{z2} represent the instruments. Again,
the extended formula processing described above can be employed for all variables
in the model.
}
\seealso{\code{\link[zoo]{zoo}}, \code{\link[zoo]{merge.zoo}}}
\examples{
###########################
## Dynamic Linear Models ##
###########################
## multiplicative SARIMA(1,0,0)(1,0,0)_12 model fitted
## to UK seatbelt data
data("UKDriverDeaths", package = "datasets")
uk <- log10(UKDriverDeaths)
dfm <- dynlm(uk ~ L(uk, 1) + L(uk, 12))
dfm
## explicitly set start and end
dfm <- dynlm(uk ~ L(uk, 1) + L(uk, 12), start = c(1975, 1), end = c(1982, 12))
dfm
## remove lag 12
dfm0 <- update(dfm, . ~ . - L(uk, 12))
anova(dfm0, dfm)
## add season term
dfm1 <- dynlm(uk ~ 1, start = c(1975, 1), end = c(1982, 12))
dfm2 <- dynlm(uk ~ season(uk), start = c(1975, 1), end = c(1982, 12))
anova(dfm1, dfm2)
plot(uk)
lines(fitted(dfm0), col = 2)
lines(fitted(dfm2), col = 4)
## regression on multiple lags in a single L() call
dfm3 <- dynlm(uk ~ L(uk, c(1, 11, 12)), start = c(1975, 1), end = c(1982, 12))
anova(dfm, dfm3)
## Examples 7.11/7.12 from Greene (1993)
data("USDistLag", package = "lmtest")
dfm1 <- dynlm(consumption ~ gnp + L(consumption), data = USDistLag)
dfm2 <- dynlm(consumption ~ gnp + L(gnp), data = USDistLag)
plot(USDistLag[, "consumption"])
lines(fitted(dfm1), col = 2)
lines(fitted(dfm2), col = 4)
if(require("lmtest")) encomptest(dfm1, dfm2)
###############################
## Time Series Decomposition ##
###############################
## airline data
data("AirPassengers", package = "datasets")
ap <- log(AirPassengers)
ap_fm <- dynlm(ap ~ trend(ap) + season(ap))
summary(ap_fm)
## Alternative time trend specifications:
## time(ap) 1949 + (0, 1, ..., 143)/12
## trend(ap) (1, 2, ..., 144)/12
## trend(ap, scale = FALSE) (1, 2, ..., 144)
## Exhibit 3.5/3.6 from Cryer & Chan (2008)
if(require("TSA")) {
data("tempdub", package = "TSA")
td_lm <- dynlm(tempdub ~ harmon(tempdub))
summary(td_lm)
plot(tempdub, type = "p")
lines(fitted(td_lm), col = 2)
}
}
\keyword{regression}
|