File: CPFs.Rd

package info (click to toggle)
r-cran-eaf 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,028 kB
  • sloc: ansic: 7,281; perl: 848; makefile: 73; sh: 43; python: 27
file content (36 lines) | stat: -rw-r--r-- 1,217 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/eaf-package.R
\docType{data}
\name{CPFs}
\alias{CPFs}
\title{Conditional Pareto fronts obtained from Gaussian processes simulations.}
\format{
A data frame with 2967 observations on the following 3 variables.
\describe{
\item{\code{f1}}{first objective values.}
\item{\code{f2}}{second objective values.}
\item{\code{set}}{indices of corresponding conditional Pareto fronts.}
}
}
\source{
\insertRef{BinGinRou2015gaupar}{eaf}
}
\usage{
CPFs
}
\description{
The data has the only goal of providing an example of use of \code{\link[=vorobT]{vorobT()}} and
\code{\link[=vorobDev]{vorobDev()}}. It has been obtained by fitting two Gaussian processes on 20
observations of a bi-objective problem, before generating conditional
simulation of both GPs at different locations and extracting non-dominated
values of coupled simulations.
}
\examples{
data(CPFs)

res <- vorobT(CPFs, reference = c(2, 200))
eafplot(CPFs[,1:2], sets = CPFs[,3], percentiles = c(0, 20, 40, 60, 80, 100),
       col = gray(seq(0.8, 0.1, length.out = 6)^2), type = "area",
       legend.pos = "bottomleft", extra.points = res$VE, extra.col = "cyan")
}
\keyword{datasets}