1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/eaf-package.R
\docType{package}
\name{eaf-package}
\alias{eaf}
\alias{eaf-package}
\title{Computation and visualization of the empirical attainment function (EAF) for
the analysis of random sets in multi-criterion optimization.}
\description{
The empirical attainment function (EAF) describes the probabilistic
distribution of the outcomes obtained by a stochastic algorithm in the
objective space. This package implements plots of summary
attainment surfaces and differences between the first-order
EAFs. These plots may be used for exploring the performance of
stochastic local search algorithms for biobjective optimization
problems and help in identifying certain algorithmic behaviors in a
graphical way.
}
\section{Functions}{
\tabular{rl}{
\code{\link[=eafdiffplot]{eafdiffplot()}} \tab Empirical attainment function differences\cr
\code{\link[=eafplot]{eafplot()}} \tab Plot the Empirical Attainment Function for two objectives\cr
\code{\link[=read_datasets]{read_datasets()}} \tab Read several data.frame sets
}
}
\section{Data}{
\describe{
\item{\code{\link{gcp2x2}}}{ Metaheuristics for solving the Graph Vertex Coloring Problem}
\item{\code{\link{HybridGA}}}{ Results of Hybrid GA on vanzyl and Richmond
water networks}
\item{\code{\link{SPEA2minstoptimeRichmond}}}{ Results of SPEA2 when minimising electrical cost and maximising the
minimum idle time of pumps on Richmond water network}
}
Extras are available at \code{system.file(package="eaf")}:
\tabular{rl}{
\code{extdata} \tab External data sets (see \code{\link{read_datasets}}) \cr
\code{scripts/eaf} \tab EAF command-line program \cr
\code{scripts/eafplot}\tab Perl script to generate plots of attainment surfaces\cr
\code{scripts/eafdiff}\tab Perl script to generate plots of EAF differences
}
}
\examples{
data(gcp2x2)
tabucol<-subset(gcp2x2, alg!="TSinN1")
tabucol$alg<-tabucol$alg[drop=TRUE]
eafplot(time+best~run,data=tabucol,subset=tabucol$inst=="DSJC500.5")
eafplot(time+best~run|inst,groups=alg,data=gcp2x2)
eafplot(time+best~run|inst,groups=alg,data=gcp2x2,
percentiles = c(0,50,100), cex = 1.4, lty = c(2,1,2),lwd = c(2,2,2),
col = c("black","blue","grey50"))
extdata_path <- system.file(package="eaf","extdata")
A1 <- read_datasets(file.path(extdata_path, "wrots_l100w10_dat"))
A2 <- read_datasets(file.path(extdata_path, "wrots_l10w100_dat"))
eafplot(A1, percentiles=c(50))
eafplot(list(A1=A1, A2=A2), percentiles=c(50))
eafdiffplot(A1, A2)
## Save to a PDF file
# dev.copy2pdf(file="eaf.pdf", onefile=TRUE, width=5, height=4)
}
\references{
\insertRef{Grunert01}{eaf}
\insertRef{GruFon2009:emaa}{eaf}
\insertRef{LopPaqStu09emaa}{eaf}
\insertRef{FonGueLopPaq2011emo}{eaf}
}
\seealso{
Useful links:
\itemize{
\item \url{https://mlopez-ibanez.github.io/eaf/}
\item \url{https://github.com/MLopez-Ibanez/eaf}
\item Report bugs at \url{https://github.com/MLopez-Ibanez/eaf/issues}
}
}
\author{
\strong{Maintainer}: Manuel López-Ibáñez \email{manuel.lopez-ibanez@manchester.ac.uk} (\href{https://orcid.org/0000-0001-9974-1295}{ORCID})
Authors:
\itemize{
\item Marco Chiarandini
\item Carlos Fonseca
\item Luís Paquete
\item Thomas Stützle
}
Other contributors:
\itemize{
\item Mickaël Binois [contributor]
}
}
\concept{empirical attainment function}
\concept{multivariate}
\concept{optimize}
\concept{time-quality algorithm profile}
\keyword{internal}
|