1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/eafplot.R
\name{eafplot}
\alias{eafplot}
\alias{eafplot.default}
\alias{eafplot.formula}
\alias{eafplot.list}
\title{Plot the Empirical Attainment Function for two objectives}
\usage{
eafplot(x, ...)
\method{eafplot}{default}(
x,
sets = NULL,
groups = NULL,
percentiles = c(0, 50, 100),
attsurfs = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
log = "",
type = "point",
col = NULL,
lty = c("dashed", "solid", "solid", "solid", "dashed"),
lwd = 1.75,
pch = NA,
cex.pch = par("cex"),
las = par("las"),
legend.pos = "topright",
legend.txt = NULL,
extra.points = NULL,
extra.legend = NULL,
extra.pch = 4:25,
extra.lwd = 0.5,
extra.lty = NA,
extra.col = "black",
maximise = c(FALSE, FALSE),
xaxis.side = "below",
yaxis.side = "left",
axes = TRUE,
sci.notation = FALSE,
...
)
\method{eafplot}{formula}(formula, data, groups = NULL, subset = NULL, ...)
\method{eafplot}{list}(x, ...)
}
\arguments{
\item{x}{Either a matrix of data values, or a data frame, or a list of
data frames of exactly three columns.}
\item{...}{Other graphical parameters to \code{\link[=plot.default]{plot.default()}}.}
\item{sets}{(\link{numeric})\cr Vector indicating which set each point belongs to.}
\item{groups}{This may be used to plot profiles of different algorithms on the same plot.}
\item{percentiles}{(\code{numeric()}) Vector indicating which percentile should be plot. The
default is to plot only the median attainment curve.}
\item{attsurfs}{TODO}
\item{xlab, ylab, xlim, ylim, log, col, lty, lwd, pch, cex.pch, las}{Graphical
parameters, see \code{\link[=plot.default]{plot.default()}}.}
\item{type}{(\code{character(1)})\cr string giving the type of plot desired. The following values
are possible, \samp{points} and \samp{area}.}
\item{legend.pos}{the position of the legend, see \code{\link[=legend]{legend()}}. A value of \code{"none"} hides the legend.}
\item{legend.txt}{a character or expression vector to appear in the
legend. If \code{NULL}, appropriate labels will be generated.}
\item{extra.points}{A list of matrices or data.frames with
two-columns. Each element of the list defines a set of points, or
lines if one of the columns is \code{NA}.}
\item{extra.legend}{A character vector providing labels for the
groups of points.}
\item{extra.pch, extra.lwd, extra.lty, extra.col}{Control the graphical aspect
of the points. See \code{\link[=points]{points()}} and \code{\link[=lines]{lines()}}.}
\item{maximise}{(\code{logical()} | \code{logical(1)}) \cr Whether the objectives must be
maximised instead of minimised. Either a single logical value that applies
to all objectives or a vector of logical values, with one value per
objective.}
\item{xaxis.side}{On which side that x-axis is drawn. Valid values are
\code{"below"} and \code{"above"}. See \code{\link[=axis]{axis()}}.}
\item{yaxis.side}{On which side that y-axis is drawn. Valid values are \code{"left"}
and \code{"right"}. See \code{\link[=axis]{axis()}}.}
\item{axes}{A logical value indicating whether both axes should be drawn
on the plot.}
\item{sci.notation}{Generate prettier labels}
\item{formula}{A formula of the type: \code{time + cost ~ run | instance}
will draw \code{time} on the x-axis and \code{cost} on the y-axis. If \code{instance} is
present the plot is conditional to the instances.}
\item{data}{Dataframe containing the fields mentioned in the formula and in groups.}
\item{subset}{(\code{integer()} | \code{NULL})\cr A vector indicating which rows of the data should be used. If left to default \code{NULL} all data in the data frame are used.}
}
\value{
Return (invisibly) the attainment surfaces computed.
}
\description{
Computes and plots the Empirical Attainment Function, either as
attainment surfaces for certain percentiles or as points.
}
\details{
This function can be used to plot random sets of points like those obtained
by different runs of biobjective stochastic optimisation algorithms. An EAF
curve represents the boundary separating points that are known to be
attainable (that is, dominated in Pareto sense) in at least a fraction
(quantile) of the runs from those that are not. The median EAF represents
the curve where the fraction of attainable points is 50\%. In single
objective optimisation the function can be used to plot the profile of
solution quality over time of a collection of runs of a stochastic optimizer.
}
\section{Methods (by class)}{
\itemize{
\item \code{eafplot(default)}: Main function
\item \code{eafplot(formula)}: Formula interface
\item \code{eafplot(list)}: List interface for lists of data.frames or matrices
}}
\examples{
data(gcp2x2)
tabucol <- subset(gcp2x2, alg != "TSinN1")
tabucol$alg <- tabucol$alg[drop=TRUE]
eafplot(time + best ~ run, data = tabucol, subset = tabucol$inst=="DSJC500.5")
\donttest{# These take time
eafplot(time + best ~ run | inst, groups=alg, data=gcp2x2)
eafplot(time + best ~ run | inst, groups=alg, data=gcp2x2,
percentiles=c(0,50,100), cex.axis = 0.8, lty = c(2,1,2), lwd = c(2,2,2),
col = c("black","blue","grey50"))
extdata_path <- system.file(package = "eaf", "extdata")
A1 <- read_datasets(file.path(extdata_path, "ALG_1_dat.xz"))
A2 <- read_datasets(file.path(extdata_path, "ALG_2_dat.xz"))
eafplot(A1, percentiles = 50, sci.notation = TRUE, cex.axis=0.6)
# The attainment surfaces are returned invisibly.
attsurfs <- eafplot(list(A1 = A1, A2 = A2), percentiles = 50)
str(attsurfs)
## Save as a PDF file.
# dev.copy2pdf(file = "eaf.pdf", onefile = TRUE, width = 5, height = 4)
}
## Using extra.points
\donttest{
data(HybridGA)
data(SPEA2relativeVanzyl)
eafplot(SPEA2relativeVanzyl, percentiles = c(25, 50, 75),
xlab = expression(C[E]), ylab = "Total switches", xlim = c(320, 400),
extra.points = HybridGA$vanzyl, extra.legend = "Hybrid GA")
data(SPEA2relativeRichmond)
eafplot (SPEA2relativeRichmond, percentiles = c(25, 50, 75),
xlab = expression(C[E]), ylab = "Total switches",
xlim = c(90, 140), ylim = c(0, 25),
extra.points = HybridGA$richmond, extra.lty = "dashed",
extra.legend = "Hybrid GA")
eafplot (SPEA2relativeRichmond, percentiles = c(25, 50, 75),
xlab = expression(C[E]), ylab = "Total switches",
xlim = c(90, 140), ylim = c(0, 25), type = "area",
extra.points = HybridGA$richmond, extra.lty = "dashed",
extra.legend = "Hybrid GA", legend.pos = "bottomright")
data(SPEA2minstoptimeRichmond)
SPEA2minstoptimeRichmond[,2] <- SPEA2minstoptimeRichmond[,2] / 60
eafplot (SPEA2minstoptimeRichmond, xlab = expression(C[E]),
ylab = "Minimum idle time (minutes)", maximise = c(FALSE, TRUE),
las = 1, log = "y", main = "SPEA2 (Richmond)",
legend.pos = "bottomright")
}
}
\seealso{
\code{\link[=eafdiffplot]{eafdiffplot()}} \code{\link[=pdf_crop]{pdf_crop()}}
}
\concept{visualisation}
|