File: eafs.Rd

package info (click to toggle)
r-cran-eaf 2.5.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,028 kB
  • sloc: ansic: 7,281; perl: 848; makefile: 73; sh: 43; python: 27
file content (66 lines) | stat: -rw-r--r-- 2,170 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/eaf.R
\name{eafs}
\alias{eafs}
\title{Exact computation of the EAF in 2D or 3D}
\usage{
eafs(points, sets, groups = NULL, percentiles = NULL)
}
\arguments{
\item{points}{Either a matrix or a data frame of numerical values, where
each row gives the coordinates of a point.}

\item{sets}{A vector indicating which set each point belongs to.}

\item{groups}{Indicates that the EAF must be computed separately for data
belonging to different groups.}

\item{percentiles}{(\code{numeric()}) Vector indicating which percentiles are computed.
\code{NULL} computes all.}
}
\value{
A data frame (\code{data.frame}) containing the exact representation
of EAF. The last column gives the percentile that corresponds to each
point. If groups is not \code{NULL}, then an additional column
indicates to which group the point belongs.
}
\description{
This function computes the EAF given a set of 2D or 3D points and a vector \code{set}
that indicates to which set each point belongs.
}
\note{
There are several examples of data sets in \code{system.file(package="eaf","extdata")}. The current implementation only supports two and three dimensional points.
}
\examples{
extdata_path <- system.file(package="eaf", "extdata")

x <- read_datasets(file.path(extdata_path, "example1_dat"))
# Compute full EAF
str(eafs(x[,1:2], x[,3]))

# Compute only best, median and worst
str(eafs(x[,1:2], x[,3], percentiles = c(0, 50, 100)))

x <- read_datasets(file.path(extdata_path, "spherical-250-10-3d.txt"))
y <- read_datasets(file.path(extdata_path, "uniform-250-10-3d.txt"))
x <- rbind(data.frame(x, groups = "spherical"),
           data.frame(y, groups = "uniform"))
# Compute only median separately for each group
z <- eafs(x[,1:3], sets = x[,4], groups = x[,5], percentiles = 50)
str(z)
# library(plotly)
# plot_ly(z, x = ~X1, y = ~X2, z = ~X3, color = ~groups,
#         colors = c('#BF382A', '#0C4B8E')) \%>\% add_markers()
}
\references{
\insertRef{Grunert01}{eaf}

\insertRef{FonGueLopPaq2011emo}{eaf}
}
\seealso{
\code{\link[=read_datasets]{read_datasets()}}
}
\author{
Manuel López-Ibáñez
}
\concept{eaf}