1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/interactive.R
\name{largest_eafdiff}
\alias{largest_eafdiff}
\title{Identify largest EAF differences}
\usage{
largest_eafdiff(data, maximise = FALSE, intervals = 5, reference, ideal = NULL)
}
\arguments{
\item{data}{(\code{list(1)}) A list of matrices with at least 3 columns}
\item{maximise}{(\code{logical()} | \code{logical(1)}) \cr Whether the objectives must be
maximised instead of minimised. Either a single logical value that applies
to all objectives or a vector of logical values, with one value per
objective.}
\item{intervals}{(\code{integer(1)}) \cr The absolute range of the differences
\eqn{[0, 1]} is partitioned into the number of intervals provided.}
\item{reference}{(\code{numeric()}) \cr Reference point as a vector of numerical values.}
\item{ideal}{(\code{numeric()}) \cr Ideal point as a vector of numerical values. If \code{NULL}, it is calculated as minimum (resp. maximum if maximising that objective) of each objective in \code{data}.}
}
\value{
(\code{list()}) A list with two components \code{pair} and \code{value}.
}
\description{
Given a list of datasets, return the indexes of the pair with the largest
EAF differences according to the method proposed by \citet{DiaLop2020ejor}.
}
\examples{
# FIXME: This example is too large, we need a smaller one.
files <- c("wrots_l100w10_dat","wrots_l10w100_dat")
data <- lapply(files, function(x)
read_datasets(file.path(system.file(package="eaf"),
"extdata", x)))
nadir <- apply(do.call(rbind, data)[,1:2], 2, max)
x <- largest_eafdiff(data, reference = nadir)
str(x)
}
\references{
\insertAllCited{}
}
\concept{eaf}
|