1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
#' Print the Summary of the Results for the Bayesian Nonparametric Model for Ecological
#' Inference in 2x2 Tables
#'
#' \code{summary} method for class \code{ecoNP}.
#'
#'
#' @aliases print.summary.ecoNP
#' @param x An object of class \code{summary.ecoNP}.
#' @param digits the number of significant digits to use when printing.
#' @param ... further arguments passed to or from other methods.
#' @return \code{summary.ecoNP} yields an object of class \code{summary.ecoNP}
#' containing the following elements:
#' \item{call}{The call from \code{ecoNP}.}
#' \item{n.obs}{The number of units.}
#' \item{n.draws}{The number of Monte Carlo samples.}
#' \item{agg.table}{Aggregate posterior estimates of the marginal
#' means of \eqn{W_1} and \eqn{W_2} using \eqn{X} and \eqn{N} as weights.} If
#' \code{param = TRUE}, the following elements are also included:
#' \item{param.table}{Posterior estimates of model parameters: population mean
#' estimates of \eqn{W_1} and \eqn{W_2}. If \code{subset} is specified, only a
#' subset of the population parameters are included.} If \code{unit = TRUE},
#' the following elements are also included:
#' \item{W1.table}{Unit-level posterior estimates for \eqn{W_1}.}
#' \item{W2.table}{Unit-level posterior estimates for \eqn{W_2}.}
#'
#' This object can be printed by \code{print.summary.ecoNP}
#' @author Kosuke Imai, Department of Politics, Princeton University,
#' \email{kimai@@Princeton.Edu}, \url{http://imai.princeton.edu}; Ying Lu,
#' Center for Promoting Research Involving Innovative Statistical Methodology
#' (PRIISM), New York University \email{ying.lu@@nyu.Edu}
#' @seealso \code{ecoNP}, \code{predict.eco}
#' @keywords methods
print.summary.ecoNP <- function(x, digits=max(3, getOption("digits")-3), ...)
{
cat("\nCall: ")
cat(paste(deparse(x$call), sep="\n", collapse="\n"))
cat("\n\nIn-sample Predictions:\n")
cat("\nUnweighted:\n")
print(x$agg.table, digits=digits, na.print="NA",...)
if (!is.null(x$agg.wtable)) {
cat("\nWeighted:\n")
print(x$agg.wtable, digits=digits, na.print="NA",...)
}
cat("\nNumber of Units:", x$n.obs)
cat("\nNumber of Monte Carlo Draws:", x$n.draws)
if (!is.null(x$param.table)) {
tt <- x$param.table
cat("\nParameter Estimates of mu1:\n")
print(tt$mu1.table, digits=digits, na.print="NA",...)
cat("\nParameter Estimates of mu2:\n")
print(tt$mu2.table, digits=digits, na.print="NA",...)
cat("\nParameter Estimates of Sigma11:\n")
print(tt$Sigma11.table, digits=digits, na.print="NA",...)
cat("\nParameter Estimates of Sigma12:\n")
print(tt$Sigma12.table, digits=digits, na.print="NA",...)
cat("\nParameter Estimates of Sigma22:\n")
print(tt$Sigma22.table, digits=digits, na.print="NA",...)
}
if (!is.null(x$W1.table)) {
cat("\n\nUnit-level Estimates of W1:\n")
print(x$W1.table, digits=digits, na.print="NA",...)
cat("\n\nUnit-level Estimates of W2:\n")
print(x$W2.table, digits=digits, na.print="NA",...)
}
cat("\n")
invisible(x)
}
|