File: gibbsBase.c

package info (click to toggle)
r-cran-eco 4.0-1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 772 kB
  • sloc: ansic: 4,214; makefile: 2
file content (302 lines) | stat: -rw-r--r-- 8,862 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

#include <string.h>
#include <stddef.h>
#include <stdio.h>      
#include <math.h>
#include <Rmath.h>
#include <R.h>
#include "vector.h"
#include "subroutines.h"
#include "rand.h"
#include "bayes.h"
#include "sample.h"

/* Normal Parametric Model for 2x2 Tables */
void cBaseeco(
	      /*data input */
	      double *pdX,     /* data (X, Y) */
	      int *pin_samp,   /* sample size */

	      /*MCMC draws */
	      int *n_gen,      /* number of gibbs draws */
	      int *burn_in,    /* number of draws to be burned in */
	      int *pinth,      /* keep every nth draw */
	      int *verbose,    /* 1 for output monitoring */

	      /* prior specification*/
	      int *pinu0,      /* prior df parameter for InvWish */
	      double *pdtau0,  /* prior scale parameter for Sigma */
	      double *mu0,     /* prior mean for mu */
	      double *pdS0,    /* prior scale for Sigma */
	      double *mustart, /* starting values for mu */
	      double *Sigmastart, /* starting values for Sigma */

	      /* incorporating survey data */
	      int *survey,     /*1 if survey data available (set of W_1, W_2)
				 0 not*/
	      int *sur_samp,   /*sample size of survey data*/
	      double *sur_W,   /*set of known W_1, W_2 */ 
				  
	      /* incorporating homeogenous areas */
	      int *x1,         /* 1 if X=1 type areas available 
				  W_1 known, W_2 unknown */
	      int *sampx1,     /* number X=1 type areas */
	      double *x1_W1,   /* values of W_1 for X1 type areas */
	      int *x0,         /* 1 if X=0 type areas available 
				  W_2 known, W_1 unknown */
	      int *sampx0,     /* number X=0 type areas */
	      double *x0_W2,   /* values of W_2 for X0 type areas */

	      /* bounds of W1 */
	      double *minW1, double *maxW1,

	      /* flags */
	      int *parameter,  /* 1 if save population parameter */
	      int *Grid,       /* 1 if Grid algorithm is used; 0 for
				  Metropolis */

	      /* storage for Gibbs draws of mu/sigmat*/
	      double *pdSMu0, double *pdSMu1, 
	      double *pdSSig00, double *pdSSig01, double *pdSSig11,
           
	      /* storage for Gibbs draws of W*/
	      double *pdSW1, double *pdSW2
	      ){	   
  
  /* some integers */
  int n_samp = *pin_samp;    /* sample size */
  int s_samp = *sur_samp;    /* sample size of survey data */ 
  int x1_samp = *sampx1;     /* sample size for X=1 */
  int x0_samp = *sampx0;     /* sample size for X=0 */
  int t_samp = n_samp+s_samp+x1_samp+x0_samp;  /* total sample size */
  int nth = *pinth;  
  int n_dim = 2;             /* dimension */
  int n_step = 1000;         /* 1/The default size of grid step */  

  /* prior parameters */ 
  double tau0 = *pdtau0;                          /* prior scale */
  int nu0 = *pinu0;                               /* prior degrees of freedom */   
  double **S0 = doubleMatrix(n_dim, n_dim);       /* The prior S parameter for InvWish */

  /* data */
  double **X = doubleMatrix(n_samp, n_dim);       /* The Y and covariates */
  double **W = doubleMatrix(t_samp, n_dim);       /* The W1 and W2 matrix */
  double **Wstar = doubleMatrix(t_samp, n_dim);   /* logit tranformed W */       
  double **S_W = doubleMatrix(s_samp, n_dim);     /* The known W1 and W2 matrix*/
  double **S_Wstar = doubleMatrix(s_samp, n_dim); /* logit transformed S_W*/

  /* grids */
  double **W1g = doubleMatrix(n_samp, n_step);    /* grids for W1 */
  double **W2g = doubleMatrix(n_samp, n_step);    /* grids for W2 */
  int *n_grid = intArray(n_samp);                 /* grid size */

  /* model parameters */
  double *mu = doubleArray(n_dim);                /* The mean */
  double **Sigma = doubleMatrix(n_dim, n_dim);    /* The covariance matrix */
  double **InvSigma = doubleMatrix(n_dim, n_dim); /* The inverse covariance matrix */

  /* misc variables */
  int i, j, k, main_loop;   /* used for various loops */
  int itemp, itempS, itempC, itempA;
  int progress = 1, itempP = ftrunc((double) *n_gen/10);
  double dtemp, dtemp1;

  /* get random seed */
  GetRNGstate();
  

  /* read the priors */
  itemp=0;
  for(k=0;k<n_dim;k++)
    for(j=0;j<n_dim;j++) S0[j][k]=pdS0[itemp++];


  /* read the data */
  itemp = 0;
  for (j = 0; j < n_dim; j++) 
    for (i = 0; i < n_samp; i++) 
      X[i][j] = pdX[itemp++];


  /* Initialize W, Wstar for n_samp */
  for (i=0; i< n_samp; i++) {
    if (X[i][1]!=0 && X[i][1]!=1) {
      W[i][0]=runif(minW1[i], maxW1[i]);
      W[i][1]=(X[i][1]-X[i][0]*W[i][0])/(1-X[i][0]);
    }

    if (X[i][1]==0) 
      for (j=0; j<n_dim; j++) W[i][j]=0.0001;

    if (X[i][1]==1) 
      for (j=0; j<n_dim; j++) W[i][j]=0.9999;

    for (j=0; j<n_dim; j++)
      Wstar[i][j]=log(W[i][j])-log(1-W[i][j]);
  }

  /* read homeogenous areas information */
  if (*x1==1) 
    for (i=0; i<x1_samp; i++) {
      W[(n_samp+i)][0]=x1_W1[i];

      if (W[(n_samp+i)][0]==0) 
	W[(n_samp+i)][0]=0.0001;

      if (W[(n_samp+i)][0]==1) 
	W[(n_samp+i)][0]=0.9999;

      Wstar[(n_samp+i)][0]=log(W[(n_samp+i)][0])-log(1-W[(n_samp+i)][0]);
    }

  if (*x0==1) 
    for (i=0; i<x0_samp; i++) {
      W[(n_samp+x1_samp+i)][1]=x0_W2[i];

      if (W[(n_samp+x1_samp+i)][1]==0) 
	W[(n_samp+x1_samp+i)][1]=0.0001;
      
      if (W[(n_samp+x1_samp+i)][1]==1) 
	W[(n_samp+x1_samp+i)][1]=0.9999;

      Wstar[(n_samp+x1_samp+i)][1]=log(W[(n_samp+x1_samp+i)][1])-log(1-W[(n_samp+x1_samp+i)][1]);
    }

  /* read the survey data */
  if (*survey==1) {
    itemp = 0;

    for (j=0; j<n_dim; j++)
      for (i=0; i<s_samp; i++) {
	S_W[i][j]=sur_W[itemp++];

	if (S_W[i][j]==0) 
	  S_W[i][j]=0.0001;

	if (S_W[i][j]==1) 
	  S_W[i][j]=0.9999;

	S_Wstar[i][j]=log(S_W[i][j])-log(1-S_W[i][j]);
	W[(n_samp+x1_samp+x0_samp+i)][j]=S_W[i][j];
	Wstar[(n_samp+x1_samp+x0_samp+i)][j]=S_Wstar[i][j];
      }
  }

  /* counters */
  itempA=0; /* for alpha */
  itempS=0; /* for storage */
  itempC=0; /* control nth draw */

  /*** calculate grids ***/
  if (*Grid) 
    GridPrep(W1g, W2g, X, maxW1, minW1, n_grid, n_samp, n_step);
    
  /* starting vales of mu and Sigma */
  itemp = 0;
  for(j=0;j<n_dim;j++){
    mu[j] = mustart[j];

    for(k=0;k<n_dim;k++)
      Sigma[j][k]=Sigmastart[itemp++];
  }
  dinv(Sigma, n_dim, InvSigma);


  
  /*** Gibbs sampler! ***/
  if (*verbose)
    Rprintf("Starting Gibbs Sampler...\n");

  for(main_loop=0; main_loop<*n_gen; main_loop++){
    /** update W, Wstar given mu, Sigma in regular areas **/

    for (i=0;i<n_samp;i++){
      if ( X[i][1]!=0 && X[i][1]!=1 ) {

	if (*Grid)
	  rGrid(W[i], W1g[i], W2g[i], n_grid[i], mu, InvSigma, n_dim);
	else 
	  rMH(W[i], X[i], minW1[i], maxW1[i], mu, InvSigma, n_dim);
      } 
      /*3 compute Wsta_i from W_i*/
      Wstar[i][0]=log(W[i][0])-log(1-W[i][0]);
      Wstar[i][1]=log(W[i][1])-log(1-W[i][1]);
    }

    
    /* update W2 given W1, mu and Sigma in x1 homeogeneous areas */
    if (*x1==1)
      for (i=0; i<x1_samp; i++) {
	dtemp=mu[1]+Sigma[0][1]/Sigma[0][0]*(Wstar[n_samp+i][0]-mu[0]);
	dtemp1=Sigma[1][1]*(1-Sigma[0][1]*Sigma[0][1]/(Sigma[0][0]*Sigma[1][1]));
	dtemp1=sqrt(dtemp1);
	Wstar[n_samp+i][1]=rnorm(dtemp, dtemp1);
	W[n_samp+i][1]=exp(Wstar[n_samp+i][1])/(1+exp(Wstar[n_samp+i][1]));
      }
    
    /* update W1 given W2, mu and Sigma in x0 homeogeneous areas */
    if (*x0==1)
      for (i=0; i<x0_samp; i++) {
	dtemp=mu[0]+Sigma[0][1]/Sigma[1][1]*(Wstar[n_samp+x1_samp+i][1]-mu[1]);
	dtemp1=Sigma[0][0]*(1-Sigma[0][1]*Sigma[0][1]/(Sigma[0][0]*Sigma[1][1]));
	dtemp1=sqrt(dtemp1);
	Wstar[n_samp+x1_samp+i][0]=rnorm(dtemp, dtemp1);
	W[n_samp+x1_samp+i][0]=exp(Wstar[n_samp+x1_samp+i][0])/(1+exp(Wstar[n_samp+x1_samp+i][0]));
      }
    
    /* update mu, Sigma given wstar using effective sample of Wstar */
    NIWupdate(Wstar, mu, Sigma, InvSigma, mu0, tau0, nu0, S0, t_samp, n_dim);
    
    /*store Gibbs draw after burn-in and every nth draws */      
    if (main_loop>=*burn_in){
      itempC++;

      if (itempC==nth){
	pdSMu0[itempA]=mu[0];
	pdSMu1[itempA]=mu[1];
	pdSSig00[itempA]=Sigma[0][0];
	pdSSig01[itempA]=Sigma[0][1];
	pdSSig11[itempA]=Sigma[1][1];
	itempA++;

	for(i=0; i<(n_samp+x1_samp+x0_samp); i++){
	  pdSW1[itempS]=W[i][0];
	  pdSW2[itempS]=W[i][1];
	  itempS++;
	}
	itempC=0;
      }
    } 


    if (*verbose)
      if (itempP == main_loop) {
	Rprintf("%3d percent done.\n", progress*10);
	itempP+=ftrunc((double) *n_gen/10); progress++;
	R_FlushConsole();
      }
    R_CheckUserInterrupt();
  } /* end of Gibbs sampler */ 

  if(*verbose)
    Rprintf("100 percent done.\n");

  /** write out the random seed **/
  PutRNGstate();

  /* Freeing the memory */
  FreeMatrix(X, n_samp);
  FreeMatrix(W, t_samp);
  FreeMatrix(Wstar, t_samp);
  FreeMatrix(S_W, s_samp);
  FreeMatrix(S_Wstar, s_samp);
  FreeMatrix(S0, n_dim);
  FreeMatrix(W1g, n_samp);
  FreeMatrix(W2g, n_samp);
  free(n_grid);
  free(mu);
  FreeMatrix(Sigma,n_dim);
  FreeMatrix(InvSigma, n_dim);
  
} /* main */